摘要Nonpolar (1120) and semipolar (1122) GaN are grown on r−plane and m−plane sapphire by MOCVD to investigate the characteristics of basal plane stacking faults (BSFs). Transmission electron microscopy reveals that the density of BSFs for the semipolar (1122) and nonpolar a−plane GaN template is 3×105 cm−1 and 8×105 cm−1, respectively. The semipolar (1122) GaN shows an arrowhead−like structure, and the nonpolar a−plane GaN has a much smoother morphology with a streak along the c−axis. Both nonpolar (1120) and semipolar (1122) GaN have very strong BSF luminescence due to the optically active character of the BSFs.
Abstract:Nonpolar (1120) and semipolar (1122) GaN are grown on r−plane and m−plane sapphire by MOCVD to investigate the characteristics of basal plane stacking faults (BSFs). Transmission electron microscopy reveals that the density of BSFs for the semipolar (1122) and nonpolar a−plane GaN template is 3×105 cm−1 and 8×105 cm−1, respectively. The semipolar (1122) GaN shows an arrowhead−like structure, and the nonpolar a−plane GaN has a much smoother morphology with a streak along the c−axis. Both nonpolar (1120) and semipolar (1122) GaN have very strong BSF luminescence due to the optically active character of the BSFs.
XU Sheng-Rui**;LIN Zhi-Yu;XUE Xiao-Yong;LIU Zi-Yang;MA Jun-Cai;JIANG Teng;MAO Wei;WANG Dang-Hui;ZHANG Jin-Cheng;HAO Yue. Comparative Study of the Characteristics of the Basal Plane Stacking Faults of Nonpolar a−Plane and Semipolar (11XU Sheng-Rui**, LIN Zhi-Yu, XUE Xiao-Yong, LIU Zi-Yang, MA Jun-Cai, JIANG Teng, MAO Wei, WANG Dang-Hui, ZHANG Jin-Cheng, HAO Yue. Comparative Study of the Characteristics of the Basal Plane Stacking Faults of Nonpolar a−Plane and Semipolar (11
[1] Waltereit P, Brandt O, Trampert A, Grahn H T, Menniger J, Ramsteiner M, Reiche M and Ploog K H 2000 Nature 406 865
[2] Xie Z L, Zhang R, Han P, Zhou S M, Liu B, Xiu X Q, Chen P, Shi Y, Zheng Y D 2008 Chin. Phys. Lett. 25 2614
[3] Xu S R, Hao Y, Zhang J C, Zhou X W, Yang L A, Zhang J F, Duan H T, Li Z M, Wei M, Hu S G, Cao Y R, Zhu Q W, Xu Z H and Gu W P 2009 J. Cryst. Growth 311 3622
[4] Xu S R, Zhang J C, Yang L A, Zhou X W, Cao Y R, Zhang J F, Xue J S, Liu Z Y, Ma J C, Bao F and Hao Y 2011 J. Cryst. Growth 32 94
[5] Moram M A, Johnston C F, Kappers M J and Humphreys C J 2009 J. Cryst. Growth 311 3239
[6] Xu S R, Hao Y, Yang L A, Zhang J C, Xue J S, Xue X Y, Liu Z Y, Lin Z Y, Ma J C, Li P X, Li J T and He Q 2011 Jpn. J. Appl. Phys. 50 115502
[7] Schubert M F, Chhajed S, Kim J K, Fredschubert E, Koleske D D, Crawford M H, Lee S R, Fischer A J, Thaler G and Banas M A 2007 Appl. Phys. Lett. 91 231114
[8] Chakraborty A, Haskell B A, Keller S, Speck J S, Denbaars S P, Nakamura S and Mishra U K 2005 Jpn. J. Appl. Phys. 44 L173
[9] Jönen H, Rossow U, Bremers H, Hoffmann L, Brendel M, Dräger A D, Schwaiger S, Scholz F, Thalmair J, Zweck J and Hangleiter A 2011 Appl. Phys. Lett. 99 011901
[10] Sun Q, Kong B H, Yerino C D, Ko T S, Leung B, Cho H K and Han J 2009 J. Appl. Phys. 106 123519
[11] Oh D S, Jang J J, Nam O, Song K M and Lee S N 2011 J. Cryst. Growth 326 33
[12] Wernicke T, Netzel C, Weyers M and Kneissl M 2008 Phys. Status Solidi C 5 1815
[13] Mierry P D, Kriouche N, Nemoz M and Nataf G 2009 Appl. Phys. Lett. 94 191903
[14] Paskov P P, Schifano R, Monemar B, Paskova T, Figge S and Hommel D 2005 J. Appl. Phys. 98 093519
[15] Netzel C, Wernicke T, Zeimer U, Brunner F, Weyers M and Kneissl M 2008 J. Cryst. Growth 310 8
[16] Stampfl C and VandeWalle C G 1998 Phys. Rev. B 57 15052
[17] Xu S R, Hao Y, Zhang J C, Cao Y R, Zhou X W, Yang L A, Ou X X, Chen K and Mao W 2010 J. Cryst. Growth 312 3521