75As Nuclear Magnetic Resonance Studies on Ba(Fe1−xNix)2As2 Single Crystals under High Pressure
ZHANG Xiao-Dong1, FAN Guo-Zhi1, ZHANG Cheng-Lin2, JING Xiu-Nian1, LUO Jian-Lin1**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
75As Nuclear Magnetic Resonance Studies on Ba(Fe1−xNix)2As2 Single Crystals under High Pressure
ZHANG Xiao-Dong1, FAN Guo-Zhi1, ZHANG Cheng-Lin2, JING Xiu-Nian1, LUO Jian-Lin1**
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 2Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA
摘要75As nuclear magnetic resonance (NMR) was measured for Ba(Fe1−xNix)2As2 single crystals with x=0.05 and x=0.1 under 0 and 1.5 GPa, respectively. For the optimal doped sample with x=0.05, the superconducting transition temperature, Tc, is strongly suppressed from 18 to 5 K, while for the over−doped sample with x=0.1, it is turned from a superconducting ground state to a disordered paramagnetic state under 1.5 GPa. Our experimental results show that the antiferromagnetic spin fluctuations, as well as Tc, are suppressed. The experimental results can be explained with the two-band model. As a result, the electronic band is shifted downwards with an increase in pressure, and the electrons become the dominant carriers in the system.
Abstract:75As nuclear magnetic resonance (NMR) was measured for Ba(Fe1−xNix)2As2 single crystals with x=0.05 and x=0.1 under 0 and 1.5 GPa, respectively. For the optimal doped sample with x=0.05, the superconducting transition temperature, Tc, is strongly suppressed from 18 to 5 K, while for the over−doped sample with x=0.1, it is turned from a superconducting ground state to a disordered paramagnetic state under 1.5 GPa. Our experimental results show that the antiferromagnetic spin fluctuations, as well as Tc, are suppressed. The experimental results can be explained with the two-band model. As a result, the electronic band is shifted downwards with an increase in pressure, and the electrons become the dominant carriers in the system.
ZHANG Xiao-Dong;FAN Guo-Zhi;ZHANG Cheng-Lin;JING Xiu-Nian;LUO Jian-Lin**. 75As Nuclear Magnetic Resonance Studies on Ba(Fe1−xNix)2As2 Single Crystals under High Pressure[J]. 中国物理快报, 2012, 29(1): 17401-017401.
ZHANG Xiao-Dong, FAN Guo-Zhi, ZHANG Cheng-Lin, JING Xiu-Nian, LUO Jian-Lin**. 75As Nuclear Magnetic Resonance Studies on Ba(Fe1−xNix)2As2 Single Crystals under High Pressure. Chin. Phys. Lett., 2012, 29(1): 17401-017401.
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Chen X H, Wu T, Wu G, Liu R H, Chen H and Fang D F 2008 Nature 453 761
[3] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L and Wang N L 2008 Phys. Rev. Lett. 100 247002
[4] Ren Z A, Yang J, Lu W, Yi W, Che G C, Dong X L, Sun L L and Zhao Z X 2008 Mater. Res. Innov. 12 105
[5] Huang Q, Qiu Y, Bao W, Green M A, Lynn J W, Gasparovic Y C, Wu T, Wu G and Chen X H 2008 Phys. Rev. Lett. 101 257003
[6] Wang X C, Liu Q Q, Lv Y X, Gao W B, Yang L X, Yu R C, Li F Y and Jin C Q 2008 Solid State Commun. 148 538
[7] Tapp J H, Tang Z J, Lv B, Sasmal K, Lorenz B, Chu Paul C W and Guloy A M 2008 Phys. Rev. B 78 060505
[8] Parker D R, Pitcher M J, Baker P J, Franke I, Lancaster T, Blundell S J and Clarke S J 2009 Chem. Commun. p. 2189
[9] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[10] Dong J, Zhang H J, Xu G, Li Z, Li G, Hu W Z, Wu D, Chen G F, Dai X, Luo J L, Fang Z and Wang N L 2008 Europhys. Lett. 83 27006
[11] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003
[12] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L and Wang N L 2008 Phys. Rev. Lett. 100 247002
[13] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[14] Takahashi H, Igawa K, Arii K, Kamihara Y, Hirano M and Hosono H 2008 Nature 453 376
[15] Alireza P L, Ko Y T C, Gillett J, Petrone C M, Cole J M, Lonzarich G G and Sebastian S E 2009 J. Phys.: Condens. Matter 21 012208
[16] Kotegawa H, Sugawara H and Tou H 2009 J. Phys. Soc. Jpn. 78 013709
[17] Fukazawa H, Takeshita N, Yamazaki T, Kondo K, Hirayama K, Kohori Y, Miyazawa K, Kito H, Eisaki H and Iyo A 2008 J. Phys. Soc. Jpn. 77 105004
[18] Torikachvili M S, Bud'ko S L, Ni N and Canfield P C 2008 Phys. Rev. Lett. 101 057006
[19] Baek S -H, Lee H, Brown S E, Curro N J, Bauer E D, Ronning F, Park T and Thompson J D 2009 Phys. Rev. Lett. 102 227601
[20] Grafe H -J, Paar D, Lang G, Curro N J, Behr G, Werner J, Hamann-Borrero J, Hess C, Leps N, Klingeler R and Büchner B 2008 Phys. Rev. Lett. 101 047003
[21] Nakano T, Fujiwara N, Tatsumi K, Okada H, Takahashi H, Kamihara Y, Hirano M and Hosono H 2010 Phys. Rev. B 81 100510
[22] Ahilan K, Balasubramaniam J, Ning F L, Imai T, Sefat A S, Jin R, McGuire M A, Sales B C and Mandrus D 2008 J. Phys.: Condens. Matter 20 472201
[23] Olariu A, Rullier-Albenque F, Colson D and Forget A 2011 Phys. Rev. B 83 054518
[24] Sales B C, McGuire M A, Sefat A S and Mandrus D 2010 Physica C 470 304
[25] Ni N, Tillman M E, Yan J -Q, Kracher A, Hannahs S T, Bud'ko S L and Canfield P C 2008 Phys. Rev. B 78 214515
[26] Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H and Xu Z A 2009 New J. Phys. 11 025008
[27] Ning F L, Ahilan K, Imai T, Sefat A S, Jin R, McGuire M A, Sales B C and Mandrus D 2008 J. Phys. Soc. Jpn. 77 103705
[28] Ning F L, Ahilan K, Imai T, Sefat A S, McGuire M A, Sales B C, Mandrus D, Cheng P, Shen B and Wen H -H 2010 Phys. Rev. Lett. 104 037001
[29] Arsenijević S, Gaál R, Sefat A S, McGuire M A, Sales B C, Mandrus D and Forró L 2011 Phys. Rev. B 84 075148