Narrow Near-Threshold Resonance in e+–He+ Scattering
LIU Min-Min1,2,3, HAN Hui-Li1**, GU Si-Hong1, SHI Ting-Yun1
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2School of Science, Wuhan Institute of Technology, Wuhan 430073 3Graduate School of the Chinese Academy of Sciences, Beijing 100049
Narrow Near-Threshold Resonance in e+–He+ Scattering
LIU Min-Min1,2,3, HAN Hui-Li1**, GU Si-Hong1, SHI Ting-Yun1
1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 2School of Science, Wuhan Institute of Technology, Wuhan 430073 3Graduate School of the Chinese Academy of Sciences, Beijing 100049
摘要An independent alternative calculation is performed for narrow near-threshold resonances in the e+–He+ system using the stabilization method in the framework of hyperspherical coordinates (HSSM). A narrow resonance at Er=−0.249995 with width Γ=1.9×10−5, associated with the He2+–Ps (n =1) threshold is confirmed. The resonances around the energies −0.365 and −0.195, predicted by Bhatia and Drachman [Phys. Rev. A 42 (1990) 5117] and confirmed by Ho [Phys. Rev. A 53 (1996) 3165], do not appear in our calculations.
Abstract:An independent alternative calculation is performed for narrow near-threshold resonances in the e+–He+ system using the stabilization method in the framework of hyperspherical coordinates (HSSM). A narrow resonance at Er=−0.249995 with width Γ=1.9×10−5, associated with the He2+–Ps (n =1) threshold is confirmed. The resonances around the energies −0.365 and −0.195, predicted by Bhatia and Drachman [Phys. Rev. A 42 (1990) 5117] and confirmed by Ho [Phys. Rev. A 53 (1996) 3165], do not appear in our calculations.
[1] Drachman R J and Houston S K 1975 Phys. Rev. A 12 885 [2] Ho Y K 1979 Phys. Rev. A 19 2347 [3] Zhou Y J and Pan S F 1998 Chin. Phys. Lett. 15 180 [4] Cheng Y and Zhou Y 2007 Phys. Rev. A 76 012704 [5] Zhou Y et al 2005 Phys. Rev. A 71 042703 [6] Ke Y et al 2004 Phys. Rev. A 70 024702 [7] Zhou Y and Lin C D 1994 J. Phys. B 27 5065 [8] Zhou Y and Lin C D 1995 Phys. Rev. Lett. 75 2296 [9] Mills Jr A P 1981 Phys. Rev. Lett. 46 717 [10] Mills Jr A P 1983 Phys. Rev. Lett. 50 671 [11] Ho Y K and Greene C H 1987 Phys. Rev. A 35 3169 [12] Ho Y K 1988 Phys. Rev. A 38 6424 [13] Bransden B H et al 2001 J. Phys. B 34 2267 [14] Bhatia A K and Drachman R J 1990 Phys. Rev. A 42 5117 [15] Ho Y K 1996 Phys. Rev. A 53 3165 [16] Ho Y K 1997 J. Chin. Phys. 35 97 [17] Ho Y K and Yan Z C 2009 J. Phys. B 42 044006 [18] Ho Y K and Yan Z C 2002 Phys. Rev. A 66 062705 [19] Igarashi A and Shimamura I 1997 Phys. Rev. A 56 4733 [20] Igarashi A and Shimamura I 2004 Phys. Rev. A 70 012706 [21] Han H L et al 2008 Phys. Rev. A 77 012721 [22] Han H L et al 2008 Phys. Rev. A 78 044701 [23] Ren Z Z et al 2011 J. Phys. B 44 065204 [24] Caradonna P et al 2009 Phys. Rev. A 80 060701 [25] Karwasz G P et al 2010 J. Phys: Conf. Ser. 199 012109 [26] Lin C D and Liu X H 1988 Phys. Rev. A 37 2749 [27] Lin C D 1995 Phys. Rep. 257 1 [28] Macek J 1968 J. Phys. B 1 831 [29] Tolstikhin O I et al 1996 J. Phys. B 29 L389 [30] Mandelshtam V A et al 1993 Phys. Rev. Lett. 70 1932 [31] Gao B et al 2010 Phys. Rev. Lett. 104 213201