Design of a 1200-V Thin-Silicon-Layer p-Channel SOI LDMOS Device
HU Sheng-Dong1,2**, ZHANG Ling1, LUO Xiao-Rong3, ZHANG Bo3, LI Zhao-Ji3, WU Li-Juan3
1College of Communication Engineering, Chongqing University, Chongqing 400044 2National Laboratory of Analogue Integrated Circuits, Sichuan Institute of Solid-State Circuits, No. 24 Research Institute of China, Electronics Technology Group Corporation, Chongqing 400060 3State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
Design of a 1200-V Thin-Silicon-Layer p-Channel SOI LDMOS Device
HU Sheng-Dong1,2**, ZHANG Ling1, LUO Xiao-Rong3, ZHANG Bo3, LI Zhao-Ji3, WU Li-Juan3
1College of Communication Engineering, Chongqing University, Chongqing 400044 2National Laboratory of Analogue Integrated Circuits, Sichuan Institute of Solid-State Circuits, No. 24 Research Institute of China, Electronics Technology Group Corporation, Chongqing 400060 3State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
摘要A 1200-V thin-silicon-layer p-channel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor is designed. The device named INI SOI p-LDMOS is characterized by a series of equidistant high concentration n+ islands inserted at the interface of a top silicon layer and a buried oxide layer. Accumulation−mode holes, caused by the electric potential dispersion between the device surface and the substrate, are located in the spacing between two neighboring n+ islands, and greatly enhance the electric field of the buried oxide layer and therefore, effectively increase the device breakdown voltage. Based on a 2−µm −thick buried oxide layer and a 1.5-µm −thick top silicon layer, a breakdown voltage of 1224 V is obtained, resulting in the high electric field (608 V/µm ) of the buried oxide layer.
Abstract:A 1200-V thin-silicon-layer p-channel silicon-on-insulator (SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) transistor is designed. The device named INI SOI p-LDMOS is characterized by a series of equidistant high concentration n+ islands inserted at the interface of a top silicon layer and a buried oxide layer. Accumulation−mode holes, caused by the electric potential dispersion between the device surface and the substrate, are located in the spacing between two neighboring n+ islands, and greatly enhance the electric field of the buried oxide layer and therefore, effectively increase the device breakdown voltage. Based on a 2−µm −thick buried oxide layer and a 1.5-µm −thick top silicon layer, a breakdown voltage of 1224 V is obtained, resulting in the high electric field (608 V/µm ) of the buried oxide layer.
(Junction breakdown and tunneling devices (including resonance tunneling devices))
引用本文:
HU Sheng-Dong;**;ZHANG Ling;LUO Xiao-Rong;ZHANG Bo;LI Zhao-Ji;WU Li-Juan
. Design of a 1200-V Thin-Silicon-Layer p-Channel SOI LDMOS Device[J]. 中国物理快报, 2011, 28(12): 128503-128503.
HU Sheng-Dong, **, ZHANG Ling, LUO Xiao-Rong, ZHANG Bo, LI Zhao-Ji, WU Li-Juan
. Design of a 1200-V Thin-Silicon-Layer p-Channel SOI LDMOS Device. Chin. Phys. Lett., 2011, 28(12): 128503-128503.
[1] Sumida H 2002 IEEE International SOI Conference p 64
[2] Zhu S Y and Li M F 2005 Chin. Phys. Lett. 22 2020
[3] Vanhoenacker-Janvier D, El Kaamouchi M and Si Moussa M 2008 IET Circuits Devices Syst. 2 151
[4] Merchant S et al 1991 Proc. ISPSD p 31
[5] Zhang S D et al 1999 IEEE Trans. Electron. Devices 46 1036
[6] Luo X R et al 2007 Solid State Electron. 51 493
[7] Luo X R et al 2008 IEEE Electron. Device Lett. 29 1395
[8] Park J M et al 2003 Solid-State Electron. 47 275
[9] Zhang B et al 2009 IEEE Trans. Electron. Devices 56 2327
[10] Luo X R et al 2010 IEEE Electron. Device Lett. 31 594
[11] Luo X R et al 2009 IEEE Trans. Electron. Devices 56 1659
[12] Hu S D et al 2011 Int. J. Electron. 98 971
[13] Hu S D, Zhang B, Li Z J and Luo X R 2010 Chin. Phys. B 19 037303-1-7
[14] Luo X R, Wang Y G and Deng H et al 2010 IEEE Trans. Electron. Devices 57 535
[15] Hu S D, Luo X R, Zhang B and Li Z J 2010 Electron. Lett. 46 82
[16] Luo X R, Zhang B and Li Z J 2008 IEEE Trans. Electron. Devices 55 1756
[17] Elahipanah H and Orouji A A 2010 IEEE Trans. Electron. Devices 57 1959
[18] Kim J, Kim S G, Roh T M et al 1998 Proc. ISPSD p 375
[19] Letavic T and Simpson M 2000 US Patent 6127703
[20] Letavic T, Albu R, Dufort B et al 2002 Proc. ISPSD p 73
[21] Wu L J, Hu S D, Zhang B and Luo X R et al 2011 Chin. Phys. B 20 087101
[22] Zheng Z S, Liu Z L and Zhang G Q et al 2005 Chin. Phys. Lett. 22 654
[23] Yoshino M, Shimizu K and Terashima T 2010 Proc. ISPSD p 93
[24] Nakagawa K, Ashida T, Takeuchi H and Fujii K 1982 IEDM p 72
[25] TMA MEDICI 4. 2 (Palo Alto CA: Technology Modeling Associates Inc.)