摘要The sheath criterion for a collisional electronegative plasma sheath in an applied magnetic field is investigated. It is assumed that the system consists of hot electrons, hot negative ions and cold positive ions. The effect of an applied magnetic field on the sheath criterion is discussed. The results reveal that the magnetic field has effects on both the upper and lower limits, which cause the range of the ion Mach number to increase. In addition, the numerical calculations of the electronegative plasma sheath are carried out to demonstrate the effects of sheath criterion on the characteristics of the sheath.
Abstract:The sheath criterion for a collisional electronegative plasma sheath in an applied magnetic field is investigated. It is assumed that the system consists of hot electrons, hot negative ions and cold positive ions. The effect of an applied magnetic field on the sheath criterion is discussed. The results reveal that the magnetic field has effects on both the upper and lower limits, which cause the range of the ion Mach number to increase. In addition, the numerical calculations of the electronegative plasma sheath are carried out to demonstrate the effects of sheath criterion on the characteristics of the sheath.
ZOU Xiu**;LIU Hui-Ping;QIU Ming-Hui;SUN Xiao-Hang
. Sheath Criterion for a Collisional Electronegative Plasma Sheath in an Applied Magnetic Field[J]. 中国物理快报, 2011, 28(12): 125201-125201.
ZOU Xiu**, LIU Hui-Ping, QIU Ming-Hui, SUN Xiao-Hang
. Sheath Criterion for a Collisional Electronegative Plasma Sheath in an Applied Magnetic Field. Chin. Phys. Lett., 2011, 28(12): 125201-125201.
[1] Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493
[2] Riemann K U 1991 Phys. Fluids B 3 3331
[3] Valentini H B 1996 Phys. Plasmas 3 1459
[4] Valentini H B 1996 J. Phys. D: Appl. Phys. 29 1175
[5] Riemann K U, Meyer P 1996 Phys. Plasmas 3 4751
[6] Riemann K U 1997 Phys. Plasmas 4 4158
[7] Chen X P 1998 Phys. Plasmas 5 804
[8] Franklin N R, Snell J 2000 Phys. Plasmas 7 3077
[9] Liu J Y, Wang Z X and Wang X G 2003 Phys. Plasmas 10 3032
[10] Liu J Y et al 2003 Phys. Plasmas 10 3507
[11] Wang Z X, Liu J Y, Zou X, Liu Y and Wang X G 2004 Acta Phys. Sin. 53 0793
[12] Femandez Palop J I et al 1995 J. Appl. Phys. 77 2937
[13] Femandez Palop J I et al 1996 Surf. Coatings Technol. 84 341
[14] Amemiya H, Annaratone B M and Allen J E 1998 J. Appl. Phys. 60 81
[15] Li M, Vyvoda M A V, Dew S K Brett M J 2000 IEEE Trans. Plasma Sci. 28 248
[16] Wang Z X, Liu J Y, Zou X, Liu Y and Wang X G 2003 Chin. Phys. Lett. 20 1537
[17] Hatami M M, Shokri B and Nilnam A R 2008 Phys. Plasma 15 123501
[18] Gong Y, Duan P, Zhang J H, Zou X, Liu J Y and Liu Y 2010 Commun. Comput. Phys. 27 883
[19] Chodura R 1982 Phys. Fluids 25 1628
[20] Riemann K U 1994 Phys. Plasmas 1 552
[21] Stangeby P C 1995 Phys. Plasmas 2 702
[22] Fabrace V and Manfredi G 2001 J. Nucl. Mater. 290-293 763
[23] Szikora B 2001 Vacuum 61 397
[24] Zou X, Ji Y K and Zou B Y 2010 Acta Phys. Sin. 59 1902