摘要The spontaneous emission of a three-level Λ−typed atom embedded in anisotropic photonic crystals with two coherent bands is investigated. The relative position of the atom is described by a position-dependent parameter θ(r0), in regard as the coherence of the two bands. The spectrum of the transition in free space vacuum is discussed. The spectral center can be manipulated by the coherent parameter θ(r0), and the spectral intensity can be adjusted via the atomic transition in the coherent photonic reservoir.
Abstract:The spontaneous emission of a three-level Λ−typed atom embedded in anisotropic photonic crystals with two coherent bands is investigated. The relative position of the atom is described by a position-dependent parameter θ(r0), in regard as the coherence of the two bands. The spectrum of the transition in free space vacuum is discussed. The spectral center can be manipulated by the coherent parameter θ(r0), and the spectral intensity can be adjusted via the atomic transition in the coherent photonic reservoir.
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
引用本文:
HUANG Xian-Shan;LIU Hai-Lian**
. Spontaneous Emission Spectrum of a Λ-Typed Atom in a Coherent Photonic Reservoir[J]. 中国物理快报, 2011, 28(12): 124203-124203.
HUANG Xian-Shan, LIU Hai-Lian**
. Spontaneous Emission Spectrum of a Λ-Typed Atom in a Coherent Photonic Reservoir. Chin. Phys. Lett., 2011, 28(12): 124203-124203.
[1] Purcell E M 1946 Phys. Rev. 69 681
[2] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[3] John S 1987 Phys. Rev. Lett. 58 2486
[4] Brinkley S E, Lin Y D, Chakraborty A, Pfaff N, Cohen D, Speck J S, Nakamura S and DenBaars S P 2011 Appl. Phys. Lett. 98 011110
[5] Agrawal M, Sun Y, Forrest S R and Peumans P 2007 Appl. Phys. Lett. 90 241112
[6] Bermel P, Luo C Y, Zeng L R, Kimerling L C and Joannopoulos J D 2007 Opt. Express 15 16986
[7] Zeng L, Yi Y, Hong C Y, Liu J, Feng N N, Duan X, Kimerling L C and Alamariu B 2006 Appl. Phys. Lett. 89 111111
[8] Solomon G S, Pelton M and Yamamoto Y 2001 Phys. Rev. Lett. 86 3903
[9] Khodjasteh K and Lidar D A 2003 Phys. Rev. A 68 022322
[10] Noda S, Fujita M and Asano T 2007 Nature Photon. 1 449
[11] Kress A, Hofbauer F, Reinelt N, Kaniber M, Krenner H J, Meyer R, Böhm G and Finley J J 2005 Phys. Rev. B 71 241304
[12] John S and Wang J 1990 Phys. Rev. Lett. 64 2418
[13] Bay S, Lambropoulos P and Molmer K 1997 Phys. Rev. Lett. 79 2654
[14] Yang Y P and Zhu S Y 2000 Phys. Rev. A 62 013805
[15] Jiang X Q, Jiang Y Y, Wang Y L and Sun X D 2006 Phys. Rev. A 73 033802
[16] Huang X S and Yang Y P 2007 J. Opt. Soc. Am. B 24 699
[17] John S and Quang T 1994 Phys. Rev. A 50 1764
[18] Angelakis D G, Paspalakis E and Knight P L 2001 Phys. Rev. A 64 013801
[19] Zhou B, Du C G and Li S Q 2004 Chin. Phys. Lett. 21 856
[20] Angelakis D G, Paspalakis E and Knight P L 2000 Phys. Rev. A 61 055802
[21] Wang X H, Yuri S Kivshar and Gu B Y 2004 Phys. Rev. Lett. 93 073901
[22] Liu N H, Xu J P and Zhu S Y 2006 Phys. Rev. B 74 075314
[23] Inés de Vega, Alonso D 2008 Phys. Rev. A 77 043836
[24] Paspalakis E, Angelakis D G and Knight P L 1999 Opt. Commun. 72 229
[25] Wang J, Yang D and Zhang H Z 2005 Chin. Phys. 14 0323
[26] Yang Y P, Fleischhauer M and Zhu S Y 2003 Phys. Rev. A 68 043805
[27] Cheng S C, Wu J N, Yang T J and Hsieh W F 2009 Phys. Rev. A 79 013801
[28] Vats N, John S and Busch K 2002 Phys. Rev. A 65 043808