摘要We consider a modified Chaplygin gas with the gravitational constant G and the cosmological constant Λ. The trivial solution describes decelerating phase to accelerating phase of the universe. The non−static with constant equation of state describes the inflationary solution. For static universe, G and Λ must be formed arbitrarily, and for static universe with constant equation of state, G and Λ should be constant.
Abstract:We consider a modified Chaplygin gas with the gravitational constant G and the cosmological constant Λ. The trivial solution describes decelerating phase to accelerating phase of the universe. The non−static with constant equation of state describes the inflationary solution. For static universe, G and Λ must be formed arbitrarily, and for static universe with constant equation of state, G and Λ should be constant.
Ujjal Debnath
. Modified Chaplygin Gas with Variable G and Λ[J]. 中国物理快报, 2011, 28(11): 119801-119801.
Ujjal Debnath
. Modified Chaplygin Gas with Variable G and Λ. Chin. Phys. Lett., 2011, 28(11): 119801-119801.
[1] Wesson P S 1978 Cosmology and Geophysics (Oxford: Oxford University)
[2] Wesson P S 1980 Gravity, Particles and Astrophysics (Dordrecht: Rieded)
[3] Dirac P A M 1938 Proc. R. Soc. London A 165 119
[4] Dirac P A M 1979 Proc. R. Soc. London A 365 19
[5] Dirac P A M 1973 Proc. R. Soc. London A 333 403
[6] Dirac P A M 1975 The General Theory of Relativity (New York: Wiley)
[7] Hoyle F and Narlikar J V 1964 Proc. R. Soc. London A 282 191
[8] Hoyle F and Narlikar J V 1971 Nature 233 41
[9] Brans C and Dicke R H 1961 Phys. Rev. 124 925
[10] Zeldovich Y B 1968 Sov. Phys. JETP 14 1143
[11] Zeldovich Y B 1968 Usp. Fiz. Nauk 11 384
[12] Peebles P J E and Ratra B 1988 Astrophys. J. 325 L17
[13] Bergmann P G 1968 Int. J. Theor. Phys. 1 25
[14] Agoner R V 1970 Phys. Rev. D 1 3209
[15] Linde A D 1974 JETP Lett. 19 183
[16] Gasperini M 1987 Phys. Lett. 194B 347
[17] Gasperini M 1988 Class. Quantum Grav. 5 521
[18] Banerjee A, Dutta Chaudhuri S B and Banerjee N 1985 Phys. Rev. D 32 3096
[19] Bertolami O 1986 Nuovo Cimento B 93 36
[20] Bertolami O 1986 Fortschr. Phys. 34 829
[21] Abdussattar and Vishwakarma R G 1997 Class. Quantum Grav. 14 945
[22] Arbab I Arbab 2003 Class. Quantum Grav. 20 93
[23] Wilkins D 1986 Am. J. Phys. 54 726
[24] Kaligas D, Wesson P and Everitt C W F 1992 Gen. Rel Grav. 24 351
[25] Abdel Rahaman A M M 1990 Gen. Relat. Grav. 22 655
[26] Berman M S 1991 Gen. Relat. Grav. 23 465
[27] Beesham A 1986 Int. J. Theor. Phys. 25 1295
[28] Wesson P S 1984 Gen. Relat. Grav. 16 193
[29] Bachall N A, Ostriker J P, Perlmutter S and Steinhardt P J 1999 Science 284 1481
[30] Perlmutter S J et al 1999 Astrophys. J. 517 565
[31] Kamenshchik A, Moschella U and Pasquier V 2001 Phys. Lett. B 511 265
[32] Gorini V, Kamenshchik A, Moschella U and Pasquier V arXiv:gr-qc/0403062
[33] Gorini V, Kamenshchik A and Moschella U 2003 Phys. Rev. D 67 063509
[34] Alam U, Sahni V, Saini T D and Starobinsky A A 2003 Mon Not. Roy. Astron. Soc. 344 1057
[35] Bento M C, Bertolami O and Sen A A 2002 Phys. Rev. D 66 043507
[36] Benaoum H B arXiv:hep-th/0205140
[37] Debnath U, Banerjee A and Chakraborty S 2004 Class Quantum Grav. 21 5609