摘要Tantalum-doped TiO2 films were deposited on glass at 300°C by pulsed laser deposition (PLD). After post−annealing in vacuum (∼10−4 Pa) at temperatures ranging from 450°C to 650°C, these films were crystallized into an anatase TiO2 structure and presented good conductive features. With increasing annealing temperature up to 550°C, the resistivity of the films was measured to be around 8.7×10−4 Ω⋅cm. Such films exhibit high transparency of over 80% in the visible light region. These results indicate that tantalum-doped anatase TiO2 films have a great potential as transparent conducting oxides.
Abstract:Tantalum-doped TiO2 films were deposited on glass at 300°C by pulsed laser deposition (PLD). After post−annealing in vacuum (∼10−4 Pa) at temperatures ranging from 450°C to 650°C, these films were crystallized into an anatase TiO2 structure and presented good conductive features. With increasing annealing temperature up to 550°C, the resistivity of the films was measured to be around 8.7×10−4 Ω⋅cm. Such films exhibit high transparency of over 80% in the visible light region. These results indicate that tantalum-doped anatase TiO2 films have a great potential as transparent conducting oxides.
[1] Ginley D S and Bright C 2000 MRS Bull. 25 15
[2] Hamberg I and Granqvist C G 1986 J. Appl. Phys. 60 R123
[3] Furubayashi Y, Hitosugi T, Yamamoto Y Inaba K, Kinoda G, Hirose Y, Shimada T and Hasegawa T 2005 Appl. Phys. Lett. 86 252101
[4] Furubayashi Y, Hitosugi T, Yamamoto Y, Hirose Y, Kinoda G, Inaba K, Shimada T and Hasegawa T 2006 Thin Solid Films 496 157
[5] Asahi R, Taga Y, Mannstadt W and Freeman A J 2000 Phys. Rev. B 61 7459
[6] Dabney M S, van Hest M F A M, Teplin C W, Arenkiel S P, Perkins J D and Ginley D S 2008 Thin Solid Films 516 4133
[7] Gillispie M A, van Hest M F A M, Dabney M S, Perkins J D and Ginley D S 2007 J. Appl. Phys. 101 0331251
[8] Hitosugi T, Ueda A, Furubayashi Y, Hirose Y, Konuma S, Shimada T and Hasegawa T 2007 Jpn. J. Appl. Phys. 46 L86
[9] Hitosugi T, Ueda A, Nakao S, Yamada N, Furubayashi Y, Hirose Y, Shimada T and Hasegawa T 2007 Appl. Phys. Lett. 90 2121061
[10] Hitosugi T, Furubayashi Y, Ueda A, Itabashi K, Inaba K, Hirose Y, Kinoda G, Yamamoto Y, Shimada T and Hasegawa T 2005 Jpn. J. Appl. Phys. 44 L1063
[11] Sato Y, Akizuki H, Kamiyama T and Shigesato Y 2008 Thin Solid Films 516 5758
[12] Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Shimada T and Hasegawa T 2007 Jpn. J. Appl. Phys. 46 5275
[13] Yamada N, Hitosugi T, Hoang N L H, Furubayashi Y, Hirose Y, Konuma S, Shimada T and Hasegawa T 2008 Thin Solid Films 516 5754
[14] Hitosugi T, Kamisaka H, Yamashita K, Nogawa H, Furubayashi Y, Nakao S, Yamada N, Chikamatsu A, Kumigashira H, Oshima M, Hirose Y, Shimada T and Hasegawa T 2008 Appl. Phys. Exp. 1 111203
[15] Patra A, Friend C S, Kapoor R and Prasad P N 2003 Chem. Mater. 15 3650
[16] Weiher R L 1962 J. Appl. Phys. 33 2834
[17] Furubayashi Y, Yamada N, Hirose Y, Yamamoto Y, Otani M, Hitosugi T, Shimada T and Hasegawa T 2007 J. Appl. Phys. 101 093705
[18] Hoang N L H, Yamada N, Hitosugi T, Kasai J, Nakao S, Shimada T and Hasegawa T 2008 Appl. Phys. Exp. 1 115001
[19] Hitosugi T, Yamada N, Nakao S, Hatabayashi K, Shimada T and Hasegawa T 2008 J. Vac. Sci. Technol. A 26 1027
[20] Daude N, Gout C and Jouanin C 1977 Phys. Rev. B 15 3229
[21] Glassford K M and Chelikowsky J R 1992 Phys. Rev. B 46 1284