The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption
WANG Tao1, GUO Qing1**, AO Zhi-Min2**, LIU Yan1, WANG Wen-Bo1, SHENG Kuang1, YU Bin3,1
1College of Electrical Engineering, Zhejiang University, Hangzhou 130027 2School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia 3College of Nanoscale Science and Engineering, State University of New York, Albany, New York 12203, USA
The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption
WANG Tao1, GUO Qing1**, AO Zhi-Min2**, LIU Yan1, WANG Wen-Bo1, SHENG Kuang1, YU Bin3,1
1College of Electrical Engineering, Zhejiang University, Hangzhou 130027 2School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia 3College of Nanoscale Science and Engineering, State University of New York, Albany, New York 12203, USA
摘要The atomic and electronic structures of AB-stacking bilayer graphene (BLG) in the presence of H2O molecules are investigated by density functional theory calculations. For free−standing BLG, the bandgap is opened to 0.101 eV with a single H2O molecule adsorbed on its surface. The perfectly suspended BLG is sensitive to H2O adsorbates, which break the BLG lattice symmetry and open an energy gap. While a single H2O molecule is adsorbed on the BLG surface with a SiO2 substrate, the bandgap widens to 0.363 eV. Both the H2O molecule adsorption and the oxide substrate contribute to the BLG bandgap opening. The phenomenon is interpreted with the charge transfer process in 2D carbon nanostructures.
Abstract:The atomic and electronic structures of AB-stacking bilayer graphene (BLG) in the presence of H2O molecules are investigated by density functional theory calculations. For free−standing BLG, the bandgap is opened to 0.101 eV with a single H2O molecule adsorbed on its surface. The perfectly suspended BLG is sensitive to H2O adsorbates, which break the BLG lattice symmetry and open an energy gap. While a single H2O molecule is adsorbed on the BLG surface with a SiO2 substrate, the bandgap widens to 0.363 eV. Both the H2O molecule adsorption and the oxide substrate contribute to the BLG bandgap opening. The phenomenon is interpreted with the charge transfer process in 2D carbon nanostructures.
WANG Tao;GUO Qing**;AO Zhi-Min**;LIU Yan;WANG Wen-Bo;SHENG Kuang;YU Bin;
. The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption[J]. 中国物理快报, 2011, 28(11): 117302-117302.
WANG Tao, GUO Qing**, AO Zhi-Min**, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin,
. The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption. Chin. Phys. Lett., 2011, 28(11): 117302-117302.
[1] Schwierz F 2010 Nature Nanotechnol. 5 487
[2] Geim A K 2009 Science 324 1530
[3] Allen M J, Tung V C and Kane R B 2010 Chem. Rev. 110 132
[4] Lin Y M, Dimitrakopoulos C, Jenkins K A, Farmer D B and Chiu H Y 2010 Science 327 662
[5] Lin Y M and Avouris P 2008 Nano Lett. 8 2119
[6] Lin Y M, Chiu H Y, Jenkins K A, Farmer D B, Avouris P and Alberto V G 2010 IEEE Electron. Devices Lett. 31 68
[7] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[8] Kim M, Debessai M and Yoo C S 2010 Nature Chem. 2 784
[9] Sze S M 1981 Physics of Semiconductor Devices 2nd edn (New York: John Wiley & Sons)
[10] Son Y W, Marvin L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[11] Yan Q, Huang B, Yu J, Zheng F, Zang J, Wu J, Gu B L, Liu F and Duan W 2007 Nano Lett. 7 1469
[12] Li X, Wang X, Zhang L, Lee S and Da H 2008 Science 319 1229
[13] Nilsson J and Neto A C 2007 Phys. Rev. Lett. 98 126801
[14] Ohta T, Bostwick A, Seyller T, Horn K and Rotenberg E 2006 Science 313 951
[15] Yavari F, Kritzinger C, Gaire C, Song L, Gulapalli H, Tasciuc T B, Ajayan P M and Koratkar N 2010 Small 6 2535
[16] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D and Geim A K 2006 Phys. Rev. Lett. 97 016801
[17] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[18] Wehling T O, Balatsky A V, Katsnelson M I, Lichtenstein A I, Scharnberg K and Wiesendanger R 2007 Phys. Rev. B 75 125425
[19] Blake P, Hill E W, Castro A H, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124
[20] Ao Z M, Zheng W T and Jiang Q 2008 Nanotechnology 10 275710
[21] Kang Y J, Kang J and Chang K J 2008 Phys. Rev. B 78 115404
[22] Shemella P and Nayak S K 2009 Appl. Phys. Lett. 94 032101
[23] Wehiling T O, Lichtenstein A I and Katsnelson M I 2008 Appl. Phys. Lett. 93 202110
[24] Leenaerts O, Partoens B and Peeters F M 2008 Phys. Rev. B 77 125416
[25] Ribeiro M, Peres N M R, Coutinho J and Briddon P R 2008 Phys. Rev. B 78 075442
[26] Sabio J, Seoánez C, Fratini S, Guinea F, NetoA H C and Sols F 2008 Phys. Rev. B 77 195409
[27] Berashevich J and Chakrborty T 2009 Phys. Rev. B 80 033404
[28] Delley B 2000 J. Chem. Phys. 113 7756
[29] Hammer B et al 1999 Phys. Rev. B 59 7413
[30] Moser J, Verdaguer A, Jimenez D, Barreiro A and Bachtold A B 2008 Appl. Phys. Lett. 92 123507
[31] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Guo G C and Guo G P 2011 Chin. Phys. Lett. 28 067301
[32] Ouyang F P, Chen L J, Xiao J and Zhang H 2011 Chin. Phys. Lett. 28 047304
[33] Pan L J, Chen W G, Zhang R Q, Hu X and Jia Y 2010 Chin. Phys. Lett. 27 077304
[34] Xu Y H, Jia Y L, Zhou J and Dong J M 2010 Chin. Phys. Lett. 27 057303
[35] Han M, Zhang Y and Zhang H B 2010 Chin. Phys. Lett. 27 037302