摘要The temperature-dependent optical properties of InAs/GaAs self-assembled quantum dots are studied by spectroscopic measurements along with the corresponding theoretical calculations. We observe the redshift of photoluminescence peak energy with increasing temperature and the thermally activated quenching of each state, which result from the efficient redistribution of carriers in quantum dots. Meanwhile, the electronic structures of the InAs/GaAs quantum dots are investigated by a detailed theoretical study in terms of an eight-band k⋅p model, taking strain effects into account. The calculated transition energies of the excitons are in reasonable agreement with the results of the photoluminescence spectra. According to the spatial distribution of carriers, it is found that the evolution of photogenerated excitons in quantum dots with temperature mainly relies on the electrons rather than the holes.
Abstract:The temperature-dependent optical properties of InAs/GaAs self-assembled quantum dots are studied by spectroscopic measurements along with the corresponding theoretical calculations. We observe the redshift of photoluminescence peak energy with increasing temperature and the thermally activated quenching of each state, which result from the efficient redistribution of carriers in quantum dots. Meanwhile, the electronic structures of the InAs/GaAs quantum dots are investigated by a detailed theoretical study in terms of an eight-band k⋅p model, taking strain effects into account. The calculated transition energies of the excitons are in reasonable agreement with the results of the photoluminescence spectra. According to the spatial distribution of carriers, it is found that the evolution of photogenerated excitons in quantum dots with temperature mainly relies on the electrons rather than the holes.
[1] Jacak L et al 1998 Quantum Dots (Berlin: Springer)
[2] Bimberg D et al 1999 Quantum Dot Heterostructures (England: Wiley)
[3] Masumoto Y and Takagahara T 2002 Semiconductor Quantum Dots (Berlin: Springer)
[4] Boxberg F and Tulkki J 2007 Rep. Prog. Phys. 70 1425
[5] Grundmann M et al 1995 Phys. Rev. B 52 11969
[6] Lubyshev D I et al 1996 Appl. Phys. Lett. 68 205
[7] Jiang W H et al 2000 J. Appl. Phys. 88 2529
[8] Lai C M et al 2003 Appl. Phys. Lett. 82 3895
[9] Akiba K et al 2004 Phys. Rev. B 70 165322
[10] Norris T B et al 2005 J. Phys. D: Appl. Phys. 38 2077
[11] Bafna M K et al 2006 J. Appl. Phys. 100 103515
[12] Chahboun A et al 2008 J. Appl. Phys. 103 083548
[13] Baira M et al 2009 J. Appl. Phys. 105 094322
[14] Xu Z Y et al 1996 Phys. Rev. B 54 11528
[15] Dai Y T et al 1997 J. Appl. Phys. 82 4489
[16] Sanguinetti S et al 2002 Appl. Phys. Lett. 81 3067
[17] Wei Z F et al 2005 J. Appl. Phys. 98 084305
[18] Ru E C Le et al 2003 Phys. Rev. B 67 245318
[19] Nuytten T et al 2008 Phys. Rev. B 77 115348
[20] Torchynskaa T V et al 2007 J. Appl. Phys. 101 024323
[21] Liang Z M et al 2009 Chin. Phys. Lett. 26 017802
[22] Chen R et al 2010 J. Appl. Phys. 107 013513
[23] Dawson P et al 2005 Phys. Rev. B 72 235301
[24] Yang X F et al 2008 Chin. Phys. Lett. 25 3059
[25] Ipatova I P et al 1993 J. Appl. Phys. 74 7198
[26] Enders P et al 1995 Phys. Rev. B 51 16695
[27] Stier O et al 1999 Phys. Rev. B 59 5688
[28] Vurgaftman I et al 2001 J. Appl. Phys. 89 5815
[29] Heitz R et al 2005 Phys. Rev. B 71 045325
[30] Sanguinetti S et al 1999 Phys. Rev. B 60 8276
[31] Duarte C A et al 2003 J. Appl. Phys. 93 6279
[32] Nee T E et al 2007 IEEE Trans. Nanotech. 6 492
[33] Marder M P 2000 Condensed Matter Physics (New York: Wiley)