Hydrogen Storage Materials Based on Single-Layer Aluminum Nitride Nanostructures
WANG Yu-Sheng1,2, YUAN Peng-Fei2, LI Meng2, SUN Qiang2, JIA Yu2**
1College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 2Center of Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052
Hydrogen Storage Materials Based on Single-Layer Aluminum Nitride Nanostructures
WANG Yu-Sheng1,2, YUAN Peng-Fei2, LI Meng2, SUN Qiang2, JIA Yu2**
1College of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011 2Center of Clean Energy and Quantum Structures, and School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052
摘要Using the first-principles method based on density functional theory, we study the hydrogen storage properties of Li-doped single-layer aluminum nitride nanostructures (AlN). For the pristine AlN sheet, each Al atom adsorbs one H2 with an average binding energy of 0.14 eV/H2. The hydrogen binding energies and storage capacities can be markedly increased by doping Li atoms onto the AlN sheet. The charge analysis shows that there are charges transferring from the Li atoms to the AlN sheet, thus the charged Li atoms can polarize hydrogen molecules and enhance the interaction between hydrogen molecules and the AlN sheet. In the fully loaded cases, the Li−doped AlN sheet can contain up to 8.25wt% of molecular hydrogen with an average binding energy of 0.20 eV/H2.
Abstract:Using the first-principles method based on density functional theory, we study the hydrogen storage properties of Li-doped single-layer aluminum nitride nanostructures (AlN). For the pristine AlN sheet, each Al atom adsorbs one H2 with an average binding energy of 0.14 eV/H2. The hydrogen binding energies and storage capacities can be markedly increased by doping Li atoms onto the AlN sheet. The charge analysis shows that there are charges transferring from the Li atoms to the AlN sheet, thus the charged Li atoms can polarize hydrogen molecules and enhance the interaction between hydrogen molecules and the AlN sheet. In the fully loaded cases, the Li−doped AlN sheet can contain up to 8.25wt% of molecular hydrogen with an average binding energy of 0.20 eV/H2.
[1] Züttel A 2003 Mater. Today 6 24
[2] Crabtree G W, Dresselhaus M S and Buchanan M V 2004 Phys. Today 57 39
[3] Turner J A 2004 Science 305 972
[4] Schlapbach L and Züttel A 2001 Nature 414 353
[5] Bhatia S K and Myers A L 2006 Langmuir 22 1688
[6] Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethue D S and Heben M J 1997 Nature 386 377
[7] Wang X X, Li H N and Yao C H 2010 Chin. Phys. Lett. 27 026803
[8] Durgun E, Ciraci S, Zhou W and Yildirim T 2006 Phys. Rev. Lett. 97 226102
[9] Li Y and Yang R T 2006 J. Am. Chem. Soc. 128 726
[10] Hu X, Skadtchenko B O, Trudeau M and Antonelli D M 2006 J. Am. Chem. Soc. 128 11740
[11] Philips A B and Shivaram B S 2008 Phys. Rev. Lett. 100 105505
[12] Hamaed A, Trudeau M and Antonellie D M 2008 J. Am. Chem. Soc. 130 6992
[13] Sun Q, Wang Q, Jena P and Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582
[14] Ataca C, Aktürk E, Ciraci S and Ustunel H 2008 Appl. Phys. Lett. 93 043123
[15] Chandrakumar K R S and Ghosh S K 2008 Nano Lett. 8 13
[16] Sun Q, Jena P, Wang Q and Marquez M 2006 J. Am. Chem. Soc. 128 9741
[17] Yu L M, Shi G S, Wang Z G, Ji G F and Lu Z P 2009 Chin. Phys. Lett. 26 086804
[18] Yoon M, Yang S Y, Hicke C, Wang E, Geohegan D and Zhang Z 2008 Phys. Rev. Lett. 100 206806
[19] Lee H, Ihm J, Cohen M L and Louie S G 2010 Nano Lett. 10 793
[20] Liu W, Zhao Y H, Li Y, Jiang Q and Lavernia E J 2009 J. Phys. Chem. C 113 2028
[21] Li M, Li J, Sun Q and Jia Y 2010 J. Appl. Phys. 108 064326
[22] Keller S, Heikman S, Ben-Yaacov I, Shen L, DenBaars S P and Mishra U K 2001 Appl. Phys. Lett. 79 3449
[23] Zhao M, Xia Y, Liu X, Tan Z, Huang B, Song C and Mei L 2006 J. Phys. Chem. B 110 8764
[24] Mei Y, Thurmer D J, Deneke C, Kiravittaya S, Chen Y, Dadgar A, Bertram F, Bastek B, Krost A, Christen J, Reindl T, Stoffel M, Coric E and Schmidt O G 2009 ACS Nano. 3 1663
[25] Jiao Y, Du A, Zhu Z, Rudolph V and Smith S C 2010 J. Phys. Chem. C 114 7846
[26] Li Y, Zhou Z, Shen P, Zhang S B and Chen Z 2009 Nanotechnology 20 215701
[27] Zhou X, Wu M M, Zhou J and Sun Q 2009 Appl. Phys. Lett. 94 103105
[28] Blöchl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[30] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[31] Cabria I, López M J and Alonso J A 2005 J. Chem. Phys. 123 204721
[32] Yoon M, Yang S, Wang E and Zhang Z 2007 Nano Lett. 7 2578
[33] Zhou Z, Zhao J and Chen Y 2007 Nanotechnology 18 424023
[34] Henkelman G, Arnaldsson A and Jonsson H 2006 Comput. Mater. Sci. 36 354
[35] Niu J, Rao B K and Jena P 1992 Phys. Rev. Lett. 68 2277