An InP-Based Dual-Depletion-Region Electroabsorption Modulator with Low Capacitance and Predicted High Bandwidth
SHAO Yong-Bo1**, ZHAO Ling-Juan1, YU Hong-Yan1,2, QIU Ji-Fang1, QIU Ying-Ping1, PAN Jiao-Qing1, WANG Bao-Jun1, ZHU Hong-Liang1, WANG Wei1
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 2School of Space Science and Physics, Shandong University at Weihai, Weihai 264209
An InP-Based Dual-Depletion-Region Electroabsorption Modulator with Low Capacitance and Predicted High Bandwidth
SHAO Yong-Bo1**, ZHAO Ling-Juan1, YU Hong-Yan1,2, QIU Ji-Fang1, QIU Ying-Ping1, PAN Jiao-Qing1, WANG Bao-Jun1, ZHU Hong-Liang1, WANG Wei1
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 2School of Space Science and Physics, Shandong University at Weihai, Weihai 264209
摘要A novel dual-depletion-region electroabsorption modulator (DDR-EAM) based on InP at 1550 nm is fabricated. The measured capacitance and extinction ratio of the DDR-EAM reveal that the dual depletion region structure can reduce the device capacitance significantly without any degradation of extinction ratio. Moreover, the bandwidth of the DDR-EAM predicted by using an equivalent circuit model is larger than twice the bandwidth of the conventional lumped-electrode EAM (L-EAM).
Abstract:A novel dual-depletion-region electroabsorption modulator (DDR-EAM) based on InP at 1550 nm is fabricated. The measured capacitance and extinction ratio of the DDR-EAM reveal that the dual depletion region structure can reduce the device capacitance significantly without any degradation of extinction ratio. Moreover, the bandwidth of the DDR-EAM predicted by using an equivalent circuit model is larger than twice the bandwidth of the conventional lumped-electrode EAM (L-EAM).
[1] Cheng Y B et al 2009 IEEE Photon. Technol. Lett. 21 356
[2] Makino S et al 2009 Indium Phosphide & Related Materials (Newport Beach, CA, USA 10–14 May 2009) ThB1.1
[3] Liu H B et al 2008 Chin. Phys. Lett. 25 3670
[4] Hou L P et al 2005 Semicond. Sci. Technol. 20 912
[5] Li G L et al 1999 IEEE Trans. Microwave Theor. Tech. 47 1177
[6] Nam S et al 2003 IEEE J. Sel. Top. Quantum Electron. 9 763
[7] Irmscher S, Lewen R and Eriksson U 2002 IEEE Photon. Technol. Lett. 14 923
[8] Tang Y B et al 2008 Opt. Commun. 281 5177
[9] Zhou J Y et al 2004 Materials, Active Devices, and Optical Amplifiers 5280 403
[10] Abedi K, Ahmadi V and Moravvej-Farshi M K 2009 Opt. Quantum Electron. 41 719
[11] Chiu Y J et al 2005 IEEE Photon. Technol. Lett. 17 2065
[12] Lin F Z, Chiu Y J and Wu T H 2007 IEEE Photon. Technol. Lett. 19 276
[13] Wu T H, Chiu Y J and Lin F Z 2008 IEEE Photon. Technol. Lett. 20 1261
[14] Shi J W et al 2005 IEEE Photon. Technol. Lett. 17 2068
[15] Shi J W et al 2007 IEEE Photon. Technol. Lett. 19 345
[16] Hojfeldt S and Mork J 2002 IEEE J. Sel. Top. Quantum Electron. 8 1265
[17] Yang H et al 2008 Semicond. Sci. Technol. 23 105011 (5 pp)
[18] Kawano K et al 1992 IEEE J. Quantum Electron. 28 224
[19] Li G L et al 2000 Electron. Lett. 36 818