Helium-Implanted Optical Planar Waveguides in Nd3+-Doped Phosphate Glass
LIU Chun-Xiao1, 3, LIU Tao2, LIU Xiu-Hong2, WEI Wei1**, PENG Bo1**
1State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119 2School of Physics, Shandong University, Jinan 250100 3Graduate School of the Chinese Academy of Sciences, Beijing 100049
Helium-Implanted Optical Planar Waveguides in Nd3+-Doped Phosphate Glass
LIU Chun-Xiao1, 3, LIU Tao2, LIU Xiu-Hong2, WEI Wei1**, PENG Bo1**
1State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119 2School of Physics, Shandong University, Jinan 250100 3Graduate School of the Chinese Academy of Sciences, Beijing 100049
摘要We report the fabrication of planar waveguides in Nd3+-doped phosphate glass by helium ion implantation. The guiding properties of the waveguide are evaluated by a prism coupler and end-face coupling methods. The refractive index profile of the waveguide is reconstructed by using the intensity calculation method. Absorption and fluorescence investigations reveal that helium ion implantation causes only slight changes in the optical properties, suggesting the possible application of the fabricated structures as waveguide lasers.
Abstract:We report the fabrication of planar waveguides in Nd3+-doped phosphate glass by helium ion implantation. The guiding properties of the waveguide are evaluated by a prism coupler and end-face coupling methods. The refractive index profile of the waveguide is reconstructed by using the intensity calculation method. Absorption and fluorescence investigations reveal that helium ion implantation causes only slight changes in the optical properties, suggesting the possible application of the fabricated structures as waveguide lasers.
[1] Campbell J H and Suratwala T I 2000 J. Non-Cryst. Solids 263/264 318
[2] Chan J W, Huser T R, Risbud S H, Hayden J S and Krol D M 2003 Appl. Phys. Lett. 82 2371
[3] Veasey D L, Funk D S, Stanford N A and Hayden J S 1999 Appl. Phys. Lett. 74 789
[4] Kostritskii S M and Moretti P 2007 J. Appl. Phys. 101 094109
[5] Chen F, Tan Y and Jaque D 2009 Opt. Lett. 34 28
[6] Berneschi S, Nunzi Contil G, Banyasz I, Watterich A, Khanh N Q, Fried M, Paszti F, Brenci M, Pelli S and Righini G C 2007 Appl. Phys. Lett. 90 121136
[7] Teo E J, Bettiol A A, Breese M B, Yang P, Mashanovich G Z, Headley W R, Reed G T and Black wood D J 2008 Opt. Express 16 573
[8] Sum T C, Bettiol A A, Florea C and Watt F 2006 J. Lightwave Technol. 24 3803
[9] Chen F, Wang X L, Li X S, Hu L L, Lu Q M, Wang K M, Shi B R and Shen D Y 2002 Appl. Surf. Sci. 193 92
[10] Chen F, Wang K M, Wang X L, Li X S, Lu Q M, Shen D Y and Nie R 2002 J. Appl. Phys. 92 2959
[11] Wang L, Chen F, Wang X L, Wang K M, Jiao Y and Wang L L 2007 J. Appl. Phys. 101 053112
[12] Regener R and Sohler W 1985 Appl. Phys. B 36 143
[13] White J M and Heidrich P F 1976 Appl. Opt. 15 151
[14] Liu X Z, Lu F, Chen F, Tan Y, Zhang R, Liu H, Wang L and Wang L L 2008 Opt. Commun. 281 1529
[15] Biesack J P computer code SRIM http://www.srim.org
[16] Ren Y Y, Dong N N, Chen F, Benayas A, Jaque D, Qiu F and Narusawa T 2010 Opt. Lett. 35 3276
[17] Zou K S, Gou H T, Lu M, Li W N, Hou C Q, Wei W, He J F, Peng B and Xiangli B 2009 Opt. Express 17 10001
[18] Tan Y and Chen F 2010 J. Phys. D: Appl. Phys. 43 075105
[19] Torchia G A, Rodenas A, Benayas A, Cantelar E, Roso L and Jaque D 2008 Appl. Phys. Lett. 92 111103
[20] Silva W F, Jacinto C, Benayas A, V de Aldana J R, Torchia G A, Chen F, Tan Y and Jaque D 2010 Opt. Lett. 35 916