摘要Bandgaps of chalcogenide glass hollow-core photonic crystal fibers (GLS HC-PCFs) are analyzed by using the plane-wave expansion method. A mid-infrared laser can propagate in these low confinement loss fibers when the wavelength falls into the bandgaps. For enlarging the bandgap width, an improved GLS HC-PCF is put forward, the normalized frequency kΛ of the improved fiber is from 7.2 to 8.5 in its first bandgap. The improved GLS HC−PCF with pitch of 4.2 µm can transmit the lights with wavelengths ranging from 3.1 µm to 3.7 µm .
Abstract:Bandgaps of chalcogenide glass hollow-core photonic crystal fibers (GLS HC-PCFs) are analyzed by using the plane-wave expansion method. A mid-infrared laser can propagate in these low confinement loss fibers when the wavelength falls into the bandgaps. For enlarging the bandgap width, an improved GLS HC-PCF is put forward, the normalized frequency kΛ of the improved fiber is from 7.2 to 8.5 in its first bandgap. The improved GLS HC−PCF with pitch of 4.2 µm can transmit the lights with wavelengths ranging from 3.1 µm to 3.7 µm .
[1] Dabas B, Sinha R K 2010 Opt. Commun. 283 1331
[2] Russell P 2003 Science 299 358
[3] Birks T A, Roberts P J, Russell P S J, Atkin D M and Shepherd T J 1995 Electron. Lett. 31 1941
[4] Knight J C, Broeng J, Birks T A and Russell P S J 1998 Science 282 1476
[5] Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S J, Roberts P J and Allan D C 1999 Science 285 1537
[6] Roberts P J, Williams D P, Sabert H, Mangan B J, Bird D M, Birks T A, Knight J C, and Russell P St J 2006 Opt. Express 14 7329
[7] Zhang H, Wang Q, Yang B and Yu L 2008 Opt. Commun. 281 3486
[8] Shephard J D, MacPherson W N, Maier R R J, Jones J D C, Hand D P, Mohebbi M, George A K, Roberts P J and Knight J C 2005 Opt. Express 13 7139
[9] Hu J, Menyuk C R 2006 Opt. Express 15 339
[10] Pottage J, Bird D, Hedley T, Knight J, Birks T, Russell P and Roberts P 2003 Opt. Express 11 2854
[11] Shaw L, Sanghera J, Aggarwal I and Hung F 2003 Opt. Express 11 3455
[12] Millo A, Lobachinsky L and Katzir A 2008 Appl. Phys. Lett. 92 021112
[13] Pearce G J, Pottage J M, Bird D M, Roberts P J, Knight J C and Russell P St J 2005 Opt. Express 13 6937
[14] Hu J, Menyuk C R 2009 Opt. Commun. 282 18
[15] Desevedavy F, Renversez G, Troles J, Houizot P, Brilland L, Vasilief I, Coulombier Q, Traynor N, Smektala F and Adama J L 2010 Opt. Mater. 32 1532
[16] Monro T M, West Y D, Hewak D W, Broderick N G R and Richardson D J 2000 Electron. Lett. 36 1998
[17] Broeng J, Barkou S E, Sndergaard T and Bjarklev A 2000 Opt. Lett. 25 96
[18] Javan A, Bennett W R Jr and Herriott D R 1961 Phys. Rev. Lett. 6 106
[19] White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke C M de and Botten L C 2002 J. Opt. Soc. Am. B 19 2322
[20] Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C, Sterke C M de and McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331
[21] Fu L, Rochette M, Ta'eed V, Moss D and Eggleton B 2005 Opt. Express 13 7637