Density Functional Theory and Grand Canonical Monte Carlo Simulations of the Hydrogen Storage Properties of Partially Truncated and Open Cage C60 Fullerenes
LI Xiao-Dong1, TANG Yong-Jian2, CHENG Xin-Lu3, ZHANG Hong1**
1College of Physical Science and Technology, Sichuan University, Chengdu 610065 2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 3Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
Density Functional Theory and Grand Canonical Monte Carlo Simulations of the Hydrogen Storage Properties of Partially Truncated and Open Cage C60 Fullerenes
LI Xiao-Dong1, TANG Yong-Jian2, CHENG Xin-Lu3, ZHANG Hong1**
1College of Physical Science and Technology, Sichuan University, Chengdu 610065 2Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 3Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
摘要The potential energies of H2 molecules with partially truncated and open cage C60 fullerenes, including C58, C55, C54(I), C54(II) and C46, are investigated by means of the density functional theory method. The energy barrier for one H2 molecule (with two postures) entering into the nanocage decreases from 435.59 (513.45) kcal/mol to 3.64 (−2.06) kcal/mol with the increase of the truncated pore. The grand canonical Monte Carlo simulations reveal that each nanocage can accommodate only one H2 molecule inside its cavity at both 77 K and 298 K. All the other H2 molecules are adsorbed round the truncated pores outside the nanocages. Exceptionally, the truncated C46 can store 2.28wt% H2 molecules at 77 K. Therefore, the truncating part of the C60 molecule may be a novel idea to explore C60 fullerene as a hydrogen storage material.
Abstract:The potential energies of H2 molecules with partially truncated and open cage C60 fullerenes, including C58, C55, C54(I), C54(II) and C46, are investigated by means of the density functional theory method. The energy barrier for one H2 molecule (with two postures) entering into the nanocage decreases from 435.59 (513.45) kcal/mol to 3.64 (−2.06) kcal/mol with the increase of the truncated pore. The grand canonical Monte Carlo simulations reveal that each nanocage can accommodate only one H2 molecule inside its cavity at both 77 K and 298 K. All the other H2 molecules are adsorbed round the truncated pores outside the nanocages. Exceptionally, the truncated C46 can store 2.28wt% H2 molecules at 77 K. Therefore, the truncating part of the C60 molecule may be a novel idea to explore C60 fullerene as a hydrogen storage material.
LI Xiao-Dong;TANG Yong-Jian;CHENG Xin-Lu;ZHANG Hong**
. Density Functional Theory and Grand Canonical Monte Carlo Simulations of the Hydrogen Storage Properties of Partially Truncated and Open Cage C60 Fullerenes[J]. 中国物理快报, 2011, 28(11): 113102-113102.
LI Xiao-Dong, TANG Yong-Jian, CHENG Xin-Lu, ZHANG Hong**
. Density Functional Theory and Grand Canonical Monte Carlo Simulations of the Hydrogen Storage Properties of Partially Truncated and Open Cage C60 Fullerenes. Chin. Phys. Lett., 2011, 28(11): 113102-113102.
[1] Schlapbach L and Zuttel A 2001 Nature 414 353
[2] Coontz R and Hanson B 2004 Science 305 957
[3] Crabtree G W, Dresselhaus M S and Buchanan M V 2004 Phys. Today 57 39
[4] Kim Y H, Zhao Y F, Williamson A, Heben M J and Zhang S B 2006 Phys. Rev. Lett. 96 016102
[5] Wu J, Gao Y and Zeng X C 2008 J. Phys. Chem. C 112 8458
[6] Koh K, Wong-Foy A G and Matzger A J 2009 J. Am. Chem. Soc. 131 4184
[7] Dinca M Dailly A, Liu Y, Brown C M, Neumann D A and Long J R 2006 J. Am. Chem. Soc. 128 16876
[8] Ma S Q Eckert J, Forster P M, Yoon J W, Hwang Y K, Chang J S, Collier C D, Parise J B and Zhou H C 2008 J. Am. Chem. Soc. 130 15896
[9] Saha D P D Deng S G and Yang Z G 2009 J. Porous Mater. 16 141
[10] Lee S M, An K H, Lee Y H, Seifert G and Frauenheim T 2001 J. Am. Chem. Soc. 123 5059
[11] Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M and Dresselhaus M S 1999 Science 286 1127
[12] Dillon A C, Jones K M, Bekkedahl T A, Kiang C H, Bethune D S and Heben M J 1997 Nature 386 377
[13] Dag S Ozturk Y, Ciraci S and Yildirim T 2005 Phys. Rev. B 72 155404
[14] Tibbetts G G Meisner G P and Olk C H 2001 Carbon 39 2291
[15] Orimo S Zúttel A, Schlapbach L, Majer G, Fukunaga T and Fujii H 2003 J. Alloys Compd. 356 716
[16] Züttel A 2003 Mater. Today 6 24
[17] Durgun E Ciraci S and Yildirim T 2008 Phys. Rev. B 77 085405
[18] Yildirim T and Ciraci S 2005 Phys. Rev. Lett. 94 175501
[19] FitzGerald S A Yildirim T, Saatodonato L J, Neumann D A, Copley J R D, Rush J J and Trouw F 1999 Phys. Rev. B 60 6439
[20] Ye Y Ahn C C, Fultz B, Vajo J J and Zinck J J 2000 Appl. Phys. Lett. 77 2171
[21] Sun Q Wang Q, Jena P and Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582
[22] Yildirim T Iniguez J and Ciraci S 2005 Phys. Rev. B 72 153403
[23] Zhao Y Kim Y H, Dillon AC, Heben M J and Zhang S B l 2005 Phys. Rev. Lett. 4 155504
[24] Pupysheva O V Farajian A A and Yakobson B I 2008 Nano. Lett. 8 764
[25] Barajas-Barraza R E and Guirado-López R A 2002 Phys. Rev. B 66 155426
[26] Türker L and Erkoc S 2003 J. Mol. Struct.: Theochem. 638 37
[27] Talyzin A V and Klyamkin S 2004 Chem. Phys. Lett. 397 77
[28] Dolgonos G 2005 J. Mol. Struct.: Theochem. 723 239
[29] Dodziuk H 2005 Chem. Phys. Lett. 410 39
[30] Komatsu K Murata M and Murata Y 2005 Science 307 238
[31] Turker L and Erkoc S 2006 Chem. Phys. Lett. 426 222
[32] Dodziuk H 2006 Chem. Phys. Lett. 426 224
[33] Saha D and Deng S 2010 Carbon 48 34713476
[34] Materials Studio DMol3 version 4.0 (Accelrys Inc: San Diego, CA)
[35] Delley B 1995 Modern Density Functional Theory: A Tool for Chemistry (Amsterdam: Elsevier)
[36] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[37] Wecka P F, Kumar T J D, Kim E and Balakrishnan N 2007 J. Chem. Phys. 126 094703
[38] Kiran B, Kandalam A K and Jena P 2006 J. Chem. Phys. 124 224703
[39] Bao Q X, Zhang H, Gao S W, Zhang H, Li X D, Cheng X L and Wang C Y 2010 Struct. Chem. 43 243
[40] Mayo S L, Olafson B D and Goddard W A 1990 J. Phys. Chem. 94 8897
[41] Buch V 1994 J. Chem. Phys. 100 7610
[42] Cao D, Feng P and Wu J 2004 Nano Lett. 4 1489
[43] Dawid A, Piatek A and Gburski Z 2008 J. Non-Cryst. Solids 354 4290
[44] Gupta A, Chempath S, Sanborn M J, Clark L A and Snurr R Q 2003 Mol. Simulat. 29 29
[45] Tycko R, Haddon R C, Dabbagh G, Glarum S H, Douglass D C and Mujse A M 1991 J. Phys. Chem. 95 518
[46] Fischer J E, Heiney P A and Smith A B 1992 Acc. Chem. Res. 25 112
[47] David W I F, Ibberson R M, Matthewman J C, Prassides K, Dennis T J S, Hare J P, Kroto H W, Taylor R and Walton D R M 1991 Nature 353 147