摘要We report the preparation of Cu2SixSn1−xS3 thin films for thin film solar cell absorbers using the reactive magnetron co−sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1−xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1−xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200–300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm−1 and an optical bandgap of 1.17±0.01 eV.
Abstract:We report the preparation of Cu2SixSn1−xS3 thin films for thin film solar cell absorbers using the reactive magnetron co−sputtering technique. Energy dispersive spectrometer and x-ray diffraction analyses indicate that Cu2Si1−xSnxS3 thin films can be synthesized successfully by partly substituting Si atoms for Sn atoms in the Cu2SnS3 lattice, leading to a shrinkage of the lattice, and, accordingly, by 2θ shifting to larger values. The blue shift of the Raman peak further confirms the formation of Cu2SixSn1−xS3. Environmental scanning electron microscope analyses reveal a polycrystalline and homogeneous morphology with a grain size of about 200–300 nm. Optical measurements indicate an optical absorption coefficient of higher than 104 cm−1 and an optical bandgap of 1.17±0.01 eV.
YAN Chang;LIU Fang-Yang;LAI Yan-Qing**;LI Jie;LIU Ye-Xiang
. Cu2SixSn1−xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells[J]. 中国物理快报, 2011, 28(10): 108801-108801.
YAN Chang, LIU Fang-Yang, LAI Yan-Qing**, LI Jie, LIU Ye-Xiang
. Cu2SixSn1−xS3 Thin Films Prepared by Reactive Magnetron Sputtering For Low-Cost Thin Film Solar Cells. Chin. Phys. Lett., 2011, 28(10): 108801-108801.
[1] Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W and Powalla M 2011 Prog. Photovolt. Res. Appl. (in press)
[2] Lafond A, Cody J A, Souilah M, Guillot-Deudon C, Kiebach R and Bensch W 2007 Inorg. Chem. 46 1502
[3] Lai Y Q, Liu F Y, Zhang Z A, Li J, Liu Y X and Tian Z L 2008 China Patent CN200810031972.1
[4] https://ncseonline. org/00/batch/CEREL/W2010 Meeting/CEREL Talk _Brinkman.pdf last access date 28/12/2010
[5] Lund E A, Johnson J L, Oo W M H and Scarpulla M A 2010 35th IEEE PVSC (Honolulu, Hawaii 20–25 June 2010) p 1948
[6] Shao L X, Chang K H and Hwang H L 2003 Mater. Sci. Semicond. Process. 6 397
[7] Friedfeld R, Raffaelle R P and Mantovani J G 1999 Sol. Energy. Mater. Sol. Cells 58 375
[8] Fernandes P A, Salome P M P and Cunda da A F 2010 Phys. Status. Solidi. C 7 901
[9] Roy S, Guha P, Kundu S N, Hanzawa H, Chaudhuri S and Pal A K 2002 Mater. Chem. Phys. 73 24
[10] Hirata H, Kitajima M, Nakamura K G and Asari E 1994 J. Phys. Chem. Solids 55 349
[11] Miao L, Tanemura S, Toh S, Kaneko K and Tanemura M 2004 J. Cryst. Growth 264 246
[12] Abaab M, kanzari M, Rezig B, Brunel M 1999 Sol. Energy. Mater. Sol. Cells 59 299
[13] Tanaka K, Moritake N and Uchiki H 2007 Sol. Energy. Mater. Sol. Cells 91 1199
[14] Koitabashi K, Ozaki S, Adachi S 2010 J. Appl. Phys. 107 053516
[15] Aruga A and Okamoto Y 2006 Jpn. J. Appl. Phys. 45 4616