摘要Nontoxic lead-free multiferroic magnetoelectric composites are successfully prepared by incorporating the dispersed Ni0.98Co0.02Fe2O4 (NCF) ferromagnetic nanoparticles into a (K0.5Na0.5)NbO3−LiSbO3 (KNN−LS) ferroelectric micromatrix. The dependence of the dielectric properties and dc magnetization on NCF phase content has been studied. Variation of dielectric constant and dielectric loss with frequency show dispersion in the low frequency range, and the dielectric constants decrease with the increase in ferrite NCF content. The magnetoelectric (ME) coupling effects including direct ME (DME) and converse ME (CME) effects are investigated in detail at room temperature. The results show that the NCF content significantly affects the ME effects. The CME and DME behaviors are strongly dependent on the driving field frequency and the bias magnetic field. High DME and CME coefficients are obtained at low frequency and at low magnetic bias field. The maximum value of DME and CME coefficients are 197.3 ps/m (12.2 mV⋅cm−1⋅Oe−1) and 314.7 ps/m, respectively.
Abstract:Nontoxic lead-free multiferroic magnetoelectric composites are successfully prepared by incorporating the dispersed Ni0.98Co0.02Fe2O4 (NCF) ferromagnetic nanoparticles into a (K0.5Na0.5)NbO3−LiSbO3 (KNN−LS) ferroelectric micromatrix. The dependence of the dielectric properties and dc magnetization on NCF phase content has been studied. Variation of dielectric constant and dielectric loss with frequency show dispersion in the low frequency range, and the dielectric constants decrease with the increase in ferrite NCF content. The magnetoelectric (ME) coupling effects including direct ME (DME) and converse ME (CME) effects are investigated in detail at room temperature. The results show that the NCF content significantly affects the ME effects. The CME and DME behaviors are strongly dependent on the driving field frequency and the bias magnetic field. High DME and CME coefficients are obtained at low frequency and at low magnetic bias field. The maximum value of DME and CME coefficients are 197.3 ps/m (12.2 mV⋅cm−1⋅Oe−1) and 314.7 ps/m, respectively.
[1] Lu S G et al 2010 Appl. Phys. Lett. 96 102902
[2] Folen V J et al 1961 Phys. Rev. Lett. 6 607
[3] Wang H T et al 2011 Chin. Phys. Lett. 28 027501
[4] Liu J M et al 2009 Chin. Phys. Lett. 26 087501
[5] Shi Z et al 2007 J. Appl. Phys. 101 043902
[6] Zhou J P et al 2008 Appl. Phys. Lett. 93 152501
[7] Nan C W Bichurin M I, Dong S X, Viehland D and Srinivasan G 2008 J. Appl. Phys. 103 031101
[8] Fiebig M 2005 J. Phys. D 38 R123
[9] Srinivasan G Rasmussen E T and Hayes R 2003 Phys. Rev. B 67 014418
[10] Chen S Y et al 2009 Appl. Phys. Lett. 95 022501
[11] Eerenstein W et al 2007 Nature Mater. 6 348
[12] Jia Y M et al 2008 Compos. Sci. Technol. 68 1440
[13] Dong X W et al 2008 J. Phys. D 41 035003
[14] Zhou J P et al 2009 J. Appl. Phys. 105 063913
[15] Devan R S and Chougule B K 2007 Physica B 393 161
[16] Boomgaard J and Born R A J 1978 J. Mater. Sci. 13 1538
[17] Takenaka T and Nagata H 2005 J. Eur. Ceram. Soc. 25 2693
[18] Zhou Y et al 2009 J. Alloys Compd. 484 535
[19] Zhang S J et al 2006 J. Appl. Phys. 100 104108
[20] Kulkarni S R et al 2005 J. Mater. Sci. 40 5691
[21] Cai N et al 2003 Phys. Rev. B 68 224103
[22] Li Y J et al 2006 J. Eur. Ceram. Soc. 26 2839
[23] Patil D R et al 2007 J. Phys. Chem. Solid 68 1522
[24] Tan S Y et al 2008 J. Appl. Phys. 103 094105
[25] Li L and Chen X M 2010 Appl. Phys. A 98 761
[26] Srinivasan G et al 2001 Phys. Rev. B 64 214408
[27] Wong C K and Shin F G 2007 J. Appl. Phys. 102 063908
[28] Jia Y M et al 2006 Appl. Phys. Lett. 88 242902
[29] Zhou Y et al 2011 J. Mater. Sci. 46 2649