摘要In the littlest Higgs model with T-parity (LHT), some new particles, such as the T-odd mirror quarks and goldstone bosons, can contribute to various observables. We calculate their contribution to Zcc coupling. Some observables are related to Zcc coupling, for example, the effective vector and axial−vector Zcc coupling constants (gVc,gAc) and c−quark forward-backward asymmetry (AcFB). We give our predictions about gVc,gAc in the LHT model and show the allowed regions of the mirror quark masses based on the experimental data of gVc−gAc. Then, we present an explanation of AcFB.
Abstract:In the littlest Higgs model with T-parity (LHT), some new particles, such as the T-odd mirror quarks and goldstone bosons, can contribute to various observables. We calculate their contribution to Zcc coupling. Some observables are related to Zcc coupling, for example, the effective vector and axial−vector Zcc coupling constants (gVc,gAc) and c−quark forward-backward asymmetry (AcFB). We give our predictions about gVc,gAc in the LHT model and show the allowed regions of the mirror quark masses based on the experimental data of gVc−gAc. Then, we present an explanation of AcFB.
WANG Ya-Bin;LI Xiang-Dong;HAN Jin-Zhong;YANG Bing-Fang;**
. Contribution of the LHT Model to ZcWANG Ya-Bin, LI Xiang-Dong, HAN Jin-Zhong, YANG Bing-Fang, **
. Contribution of the LHT Model to Zc
[1] Arkani-Hamed N, Cohen A G and Georgi H 2001 Phys. Lett. B 513 232
Arkani-Hamed N et al 2002 J. High Energy Phys. 0208 020
Arkani-Hamed N et al 2002 J. High Energy Phys. 0208 021
Low I, Skiba W and Smith D 2002 Phys. Rev. D 66 072001
Kaplan D E and Schmaltz M 2003 J. High Energy Phys. 0310 039
[2] Arkani-Hamed N, Cohen A G, Katz E, Nelson A E, Gregoire T and Wacker J G 2002 J. High Energy Phys. 0208 021
[3] Arkani-Hamed N, Cohen A G, Katz E and Nelson A E 2002 J. High Energy Phys. 0207 034
[4] Barbieri R and Strumia A 1999 Phys. Lett. B 144 462
[5] Csaki C, Hubisz J, Kribs G D, Meade P and Terning J 2003 Phys. Rev. D 67 115002
Csaki C, Hubisz J, Kribs G D, Meade P and Terning J 2003 Phys. Rev. D 68 035009
[6] Hewett J L, Petriello F J and Rizzo T G 2003 J. High Energy Phys. 0310 062
[7] Perelstein M, Peskin M E and Pierce A 2004 Phys. Rev. D 69 075002
[8] Chen M C and Dawson S 2004 Phys. Rev. D 70 015003
[9] Cheng H C and Low I 2003 J. High Energy Phys. 0309 051
[10] Cheng H C and Low I 2004 J. High Energy Phys. 0408 061
[11] Low I 2004 J. High Energy Phys. 0410 067
[12] Yue C X, Zhang N, Li D and Zhu S H 2008 Chin. Phys. Lett. 25 66
Yue C X, Liu J Y and Zhu S H 2008 Phys. Rev. D 78 095006
Wang L and Yang J M 2009 Phys. Rev. D 79 055013
Yang B F, Wang X L and Han J Z 2011 Nucl. Phys. B 1 847
Han J Z, Li B Z and Wang X L 2011 Phys. Rev. D 83 034032
Han J Z, Wang X L and Yang B F 2011 Nucl. Phys. B 843 383
Han X F, Wang L and Yang J M 2008 Phys. Rev. D 78 075017
Yang B F, Han J Z, Wang L and Wang X L 2011 Phys. Rev. D 83 094020
[13] Aguilar-Saavedra J A et al DESY 2001-011, ECFA 2001-209
[14] The ALEPH, DELPHI, L3, OPAL, SLD Collaborations (1) the LEP Electroweak Working Group, (2) the SLD Electroweak and Heavy Flavour Groups 2006 Phys. Rep. 427 257
[15] Cheng H C and Low I 2003 J. High Energy Phys. 0309 051
Cheng H C and Low I 2004 J. High Energy Phys. 0408 061
Low I 2004 J. High Energy Phys. 0410 067
Hubisz J and Meade P 2005 Phys. Rev. D 71 035016
[16] Blanke M, Buras A J, Poschenrieder A, Recksiegel S, Tarantino C, Uhlig S and Weiler A 2007 J. High Energy Phys. 0701 066
[17] Hubisz J, Lee S J and Paz G 2006 J. High Energy Phys. 0606 041
[18] Blanke M, Buras A J, Poschenrieder A, Tarantino C, Uhlig S and Weiler A 2006 J. High Energy Phys. 0612 003
[19] Blanke M, Buras A J, Poschenrieder A, Recksiegel S, Tarantino C, Uhlig S and Weiler A 2006 J. High Energy Phys. 0611 062
[20] Blanke M, Buras A J, Poschenrieder A, Recksiegel S, Tarantino C, Uhlig S and Weiler A 2007 Phys. Lett. B 646 253
[21] Nakamura K et al (Particle Data Group) 2010 J. Phys. G 37 075021