Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with ℤ2n Grading
KE San-Min1,2**, LI Xin-Ying1, WANG Chun3, YUE Rui-Hong4
1College of Science, Chang'an University, Xi'an 710064 2Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064 3College of Science, Xi'an Shiyou University, Xi'an 710065 4Faculty of Science, Ningbo University, Ningbo 315211
Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with ℤ2n Grading
KE San-Min1,2**, LI Xin-Ying1, WANG Chun3, YUE Rui-Hong4
1College of Science, Chang'an University, Xi'an 710064 2Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang'an University, Xi'an 710064 3College of Science, Xi'an Shiyou University, Xi'an 710065 4Faculty of Science, Ningbo University, Ningbo 315211
摘要The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with ℤ2n grading is derived using a first−order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n=2, our results coincide with the results given by Magro for the pure spinor description of AdS5×S5 string theory (when the ghost terms are omitted).
Abstract:The classical exchange algebra satisfied by the monodromy matrix of the nonlinear sigma model on a supercoset target with ℤ2n grading is derived using a first−order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution. When n=2, our results coincide with the results given by Magro for the pure spinor description of AdS5×S5 string theory (when the ghost terms are omitted).
KE San-Min;**;LI Xin-Ying;WANG Chun;YUE Rui-Hong
. Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with ℤ2n Grading[J]. 中国物理快报, 2011, 28(10): 101101-101101.
KE San-Min, **, LI Xin-Ying, WANG Chun, YUE Rui-Hong
. Classical Exchange Algebra of the Nonlinear Sigma Model on a Supercoset Target with ℤ2n Grading. Chin. Phys. Lett., 2011, 28(10): 101101-101101.
[1] Bena I, Polchinski J and Roiban R 2004 Phys. Rev. D 69 046002
[2] Metsaev R R and Tseytlin A A 1998 Nucl. Phys. B 533 109
Roiban R and Siegel W 2000 J. High Energy Phys. 0011 024
[3] Berkovits N, Bershadsky M, Hauer T, Zhukov S and Zwiebach B 2000 Nucl. Phys. B 567 61
[4] Rahmfeld J and Rajaraman A 1999 Phys. Rev. D 60 064014
[5] Park J and Rey S J 1999 J. High Energy Phys. 9901 001
[6] Zhou J G 1999 Nucl. Phys. B 559 92
[7] Chen B, He Y L, Zhang P and Song X C 2005 Phys. Rev. D 71 086007
[8] Adam I, Dekel A, Mazzucato L and Oz Y 2007 J. High Energy Phys. 0706 085
[9] Arutyunov G and Frolov S 2008 J. High Energy Phys. 0809 129
[10] Vallilo B C 2004 J. High Energy Phys. 0403 037
[11] Bianchi M and Klǔso J 2006 J. High Energy Phys. 0608 030
[12] Berkovits N 2005 J. High Energy Phys. 0502 060
[13] Berkovits N 2005 J. High Energy Phys. 0503 041
[14] Das A K, Maharana J, Melikyan A and Sato M 2004 J. High Energy Phys. 0412 055
[15] Das A K, Melikyan A and Sato M 2005 J. High Energy Phys. 0511 015
[16] Mikhailov A Preprint arXiv:hep-th/0609108
[17] Klǔso J 2007 J. High Energy Phys. 0709 100
[18] Aoyama S Preprint arXiv:0709.3911 [hep-th]
[19] Dorey N and Vicedo B 2007 J. High Energy Phys. 0703 045
[20] Klǔso J 2007 J. High Energy Phys. 0704 040
[21] Mikhailov A and Schäfer-Nameki S 2008 Nucl. Phys. B 802 1
[22] Magro M 2009 J. High Energy Phys. 0901 021
[23] Vicedo B Preprint arXiv:0910.0221 [hep-th]
[24] Vicedo B 2011 Lett. Math. Phys. 95 249
[25] Dekel A and Oz Y 2011 J. High Energy Phys. 1103 117
[26] Young C A S 2006 Phys. Lett. B 632 559
[27] Kagan D and Young C A S 2006 Nucl. Phys. B 745 109
[28] Klǔso J 2006 J. High Energy Phys. 0610 046
[29] Ke S M, Shi K J, Wang C and Wu S 2007 Chin. Phys. Lett. 24 3374
[30] Ke S M, Shi K J and Wang C 2008 Int. J. Mod. Phys. A 23 4219
[31] Ke S M, Yang W L, Wang C, Jiang K X and Shi K J 2011 J. Math. Phys. 52 083511
[32] Maillet J M 1985 Phys. Lett. B 162 137
[33] Maillet J M 1986 Nucl. Phys. B 269 54
[34] Maillet J M 1986 Phys. Lett. B 167 401