摘要Motivated by the new physical interpretation of quasinormal modes proposed by Maggiore [Phys. Rev. Lett. 100 (2008) 141301], we investigate the quantization of large Schwarzschild-Anti de Sitter black holes in even-dimensional spacetimes, from the interesting highly real quasinormal modes found recently. Following Maggiore's treatment and Kunstatter's method, we derive the area and entropy spectra of the black holes. It is found that the results from both approaches are in full consistency. This implies that one can quantize a black hole via different asymptotic quasinormal modes besides the high damping ones that are usually adopted in the literature. Furthermore, we find that the area and entropy spectra are equidistant and independent of the cosmological constant. However, the spacings depend on the black hole dimension.
Abstract:Motivated by the new physical interpretation of quasinormal modes proposed by Maggiore [Phys. Rev. Lett. 100 (2008) 141301], we investigate the quantization of large Schwarzschild-Anti de Sitter black holes in even-dimensional spacetimes, from the interesting highly real quasinormal modes found recently. Following Maggiore's treatment and Kunstatter's method, we derive the area and entropy spectra of the black holes. It is found that the results from both approaches are in full consistency. This implies that one can quantize a black hole via different asymptotic quasinormal modes besides the high damping ones that are usually adopted in the literature. Furthermore, we find that the area and entropy spectra are equidistant and independent of the cosmological constant. However, the spacings depend on the black hole dimension.
GUO Guang-Hai**;DING Xia
. Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes[J]. 中国物理快报, 2011, 28(10): 100401-100401.
GUO Guang-Hai**, DING Xia
. Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes. Chin. Phys. Lett., 2011, 28(10): 100401-100401.
[1] Bekenstein J D, 1974 Lett. Nuovo Cimento 11 467
[2] Bekenstein J D, Mukahnov V F 1995 Phys. Lett. B 360 7
[3] Louko J and Makela J 1996 Phys. Rev. D 54 4982
[4] Makela J 1997 Phys. Lett. B 390 115
[5] Bekenstein J D arXiv:gr-qc/9710076
[6] Bekenstein J D arXiv:gr-qc/9808028
[7] Wang J and Jing J 2005 Chin. Phys. Lett. 22 2766
[8] Jing J and Ding C 2008 Chin. Phys. Lett. 25 858
[9] Hod S 1998 Phys. Rev. Lett. 81 4293
[10] Kunstatter G 2003 Phys. Rev. Lett. 90 161301
[11] Dreyerr O 2003 Phys. Rev. Lett. 90 081301
[12] Natario J and Schiappa R 2004 Adv. Theor. Math. Phys. 8 1001
[13] Maggiore M 2008 Phys. Rev. Lett. 100 141301
[14] Vagenas E C 2008 JHEP 11 073
[15] Medved A J M 2008 Class. Quantum Grav. 25 205014
[16] Wei S, Li R, Liu Y and Ren J 2009 JHEP 03 076
[17] Kwon Y and Nam S 2010 Class. Quantum Grav. 27 125007
[18] Wei S, Liu Y, Yang K and Zhong Y 2010 Phys. Rev. D 81 104042
[19] Li W, Xu L and Lu J 2009 Phys. Lett. B 676 177
[20] Chen D, Yang H and Zu X 2010 Eur. Phys. J. C 69 289
[21] Ren J, Song S and Wei S 2010 Commun. Theor. Phys. 53 1097
[22] Guo G and Guo J 2011 Mod. Phys. Lett. A 26(4) 303
[23] Hawking S W and Page D N 1983 Commun. Math. Phys. 87 577
[24] Berti E, Cardoso V and Starinets A 2009 Class. Quantum Grav. 26 163001
[25] Daghigh R G and Green M D 2009 Class. Quantum Grav. 26 125017
[26] Daghigh R G 2009 JHEP 04 045
[27] Abbott L F and Deser S 1982 Nucl. Phys. B 195 76