Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy
JI Chang-Jian1**, ZHANG Cheng-Qiang1, ZHAO Gang2, WANG Wen-Jing1, SUN Gang1, YUAN Hui-Min1, HAN Qi-Feng3
1Department of Physics, Qilu Normal University, Jinan 250013 2Department of Physics, Ludong University, Yantai 264025 3Department of Physics, Shanghai Normal University, Shanghai 200234
Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy
JI Chang-Jian1**, ZHANG Cheng-Qiang1, ZHAO Gang2, WANG Wen-Jing1, SUN Gang1, YUAN Hui-Min1, HAN Qi-Feng3
1Department of Physics, Qilu Normal University, Jinan 250013 2Department of Physics, Ludong University, Yantai 264025 3Department of Physics, Shanghai Normal University, Shanghai 200234
摘要GaMnAs films are prepared by low-temperature molecular beam epitaxy. Based on the experimental results, the influence of growth and annealing conditions on the physical properties and defect configurations is discussed. In particular, the major compensating defects, such as As antisite (AsGa) and Mn interstitials (MnI), are studied in detail. Thereby, the relationship between structure and magnetic properties is given. It is indicated that a higher annealing temperature can remove MnI out of the GaMnAs lattices so as to raise the Curie temperature TC. Meticulous optimization of growth techniques (TS=230°C, As2:Ga=5:1 and Ta=250°C) leads to reproducible physical properties and ferromagnetic transition temperatures well above 148 K.
Abstract:GaMnAs films are prepared by low-temperature molecular beam epitaxy. Based on the experimental results, the influence of growth and annealing conditions on the physical properties and defect configurations is discussed. In particular, the major compensating defects, such as As antisite (AsGa) and Mn interstitials (MnI), are studied in detail. Thereby, the relationship between structure and magnetic properties is given. It is indicated that a higher annealing temperature can remove MnI out of the GaMnAs lattices so as to raise the Curie temperature TC. Meticulous optimization of growth techniques (TS=230°C, As2:Ga=5:1 and Ta=250°C) leads to reproducible physical properties and ferromagnetic transition temperatures well above 148 K.
JI Chang-Jian**;ZHANG Cheng-Qiang;ZHAO Gang;WANG Wen-Jing;SUN Gang;YUAN Hui-Min;HAN Qi-Feng
. Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy[J]. 中国物理快报, 2011, 28(9): 97101-097101.
JI Chang-Jian**, ZHANG Cheng-Qiang, ZHAO Gang, WANG Wen-Jing, SUN Gang, YUAN Hui-Min, HAN Qi-Feng
. Preparation and Properties of Diluted Magnetic Semiconductors GaMnAs by Low-Temperature Molecular Epitaxy. Chin. Phys. Lett., 2011, 28(9): 97101-097101.
[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Wang Y, Yu N S, Li M and Lau K M 2011 Chin. Phys. Lett. 28 057102
[3] Shi F, Zhang Y J, Cheng H C, Zhao J, Xiong Y J and Chang B K 2011 Chin. Phys. Lett. 28 044204
[4] Lin L X, Chen J H, Wu P, Zeng Y H, Ma X Y and Yang D R 2011 Chin. Phys. Lett. 28 036104
[5] Gao L P, Han P D, Mao X, Fan Y J, Hu S X, Zhao C H and Mi Y H 2011 Chin. Phys. Lett. 28 036108
[6] Hou Q F, Wang X L, Xiao H L, Wang C M, Yang C B, Yin H B, Li J M and Wang Z G 2011 Chin. Phys. Lett. 28 037102
[7] Huang J, G T Y, Zhang H Y, Xu J B, Fu X J, Yang H and Niu J B 2010 Chin. Phys. Lett. 27 118502
[8] Ohno Y, Young D K, Beschotsen B, Matsukura F, Ohno H and Awschalom D D 1999 Nature 402 790
[9] Hou Q F, Wang X L, Xiao H L, Wang C M, Yang C B and Li J M 2010 Chin. Phys. Lett. 27 057104
[10] Pan Y B, Hao M S, Qi S L Fang and Zhang G Y 2010 Chin. Phys. Lett. 27 038503
[11] Yang L, Ma J J, Zhu C, Hao Y and Ma X H 2010 Chin. Phys. Lett. 27 027102
[12] Niu J, Yang Z and Chang B K 2009 Chin. Phys. Lett. 26 104202
[13] Ohno H, Shen A, Matsukura F, Oiwa A, Endo A, Katsumoto S and Iye Y 1996 Appl. Phys. Lett. 69 363
[14] Hayashi T, Tanaka M, Nishinaga T, Shimada H, Tsuchiya H and Otuka Y 1997 J. Cryst. Growth 175 1063
[15] Van Esch A, Van Bockstal L, Boeck J D, Verbanck G, van Steenbergen A S, Wellmann P J, Grietens B, Bogaerts, R, Herlach F and Borghs G 1997 Phys. Rev. B 56 13103
[16] Ohno H 1998 Science 281 951
[17] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[18] Dietl T, Ohno H and Matsukura F 2001 Phys. Rev. B 63 195205
[19] Burch K S, Awschalom D D andBasov D N 2008 J. Magn. Magn. Mater. 320 3207
[20] Ohya S, Muneta I, Hai P N and Tanaka M 2010 Phys. Rev. Lett. 104 167204
[21] Ji C J, Cao X C and Wang Y Q 2007 Appl. Phys. Lett. 90 232501
[22] Novàk V, Olejnik K, Wunderlich J, Curk M, Vyborny K, Rushforth A W, Edmonds K W, Campion R P, Gallagher B L, Sinova J and Jungwirth T 2008 Phys. Rev. Lett. 101 077201
[23] Richardella A, Roushan P, Mack S, Zhou B, Huse D A, Awshalom D D and Yazdani A 2010 Science 327 665
[24] Liu X, Prasad A and Nishio J 1995 Appl. Phys. Lett. 67 279
[25] Schott G M, Faschinger W andMolenkamp L W 2001 Appl. Phys. Lett. 79 1807
[26] Sadowski J andDomagala J Z 2004 Phys. Rev. B 69 075206
[27] Kuryliszyn-Kudelska I, Domagala J Z and Wljtowicza T 2004 J. Appl. Phys. 95 603
[28] Zhao L X, Staddon C R, Wang K Y, Edmonds K W, Campion R P, Gallagher B L and Foxon C T 2005 Appl. Phys. Lett. 86 071902
[29] Yu K W, Walukiewiez, W, Wojtowicz T, Kuryliszyn-Kudelska, I, Liu X, Sasaki Y and Furdyna J K 2002 Phys. Rev. B 65 201303
[30] Campion R P, Edmonds K W, Zhao L X, Wang K Y, Foxon C T, Gallagher B L and Staddon C R 2003 J. Cryst. Growth 247 42
[31] Jiang C P, Zhao J H, Deng J J, Yang F H, Niu Z C, Wu X G and Zheng H Z 2005 J. Appl. Phys. 97 063908