摘要An analysis is presented for an unsteady boundary layer stagnation-point flow of a Newtonian fluid and the heat transfer towards a stretching sheet taking non-conventional partial slip conditions at the sheet. The self-similar equations are obtained using similarity transformations and solved numerically by the shooting method. Effects of the parameters involved in the equations, especially velocity slip and thermal slip parameters on the velocity and temperature profiles, are analyzed extensively. It is revealed that due to the velocity and thermal slip parameters, the rate of heat transfer from the sheet and the wall skin friction change significantly.
Abstract:An analysis is presented for an unsteady boundary layer stagnation-point flow of a Newtonian fluid and the heat transfer towards a stretching sheet taking non-conventional partial slip conditions at the sheet. The self-similar equations are obtained using similarity transformations and solved numerically by the shooting method. Effects of the parameters involved in the equations, especially velocity slip and thermal slip parameters on the velocity and temperature profiles, are analyzed extensively. It is revealed that due to the velocity and thermal slip parameters, the rate of heat transfer from the sheet and the wall skin friction change significantly.
Krishnendu Bhattacharyya**;Swati Mukhopadhyay;G. C. Layek
. Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. 中国物理快报, 2011, 28(9): 94702-094702.
Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek
. Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet. Chin. Phys. Lett., 2011, 28(9): 94702-094702.
[1] Hiemenz K 1911 Dingler's Poly. J. 326 321
[2] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[3] Chiam T C 1994 J. Phys. Soc. Jpn. 63 2443
[4] Mahapatra T R and Gupta A S 2001 Acta Mech. 152 191
[5] Mahapatra T R et al 2002 Heat Mass Transfer 38 517
[6] Mahapatra T R and Gupta A S 2004 Int. J. Non-Linear Mech. 39 811
[7] Nazar R et al 2004 Int. J. Non-Linear Mech. 39 1227
[8] Ishak A et al 2009 Physica A 388 3377
[9] Hayat T et al 2009 Nonlinear Anal. Real World Appl. 10 1514
[10] Zhu J, Zheng L and Zhang X 2010 World Academy of Science, Engineering and Technology 63 151
[11] Bhattacharyya K and Layek G C 2011 Int. J. Heat Mass Transfer 54 302
[12] Beavers G S and Joseph D D 1967 J. Fluid Mech. 30 197
[13] Andersson H I 2002 Acta Mech. 158 121
[14] Wang C Y 2002 Chem. Eng. Sci. 57 3745
[15] Ariel P D, Hayat T and Asghar S 2006 Acta Mech. 187 29
[16] Hayat T et al 2008 Int. J. Heat Mass Transfer 51 4528
[17] Zhu J et al 2010 Appl. Math. Mech. 31 439
[18] Bhattacharyya K et al 2011 Int. J. Heat Mass Transfer 54 308
[19] Surma Devi C D et al 1986 Int. J. Heat Mass Transfer 29 1996
[20] Smith S H 1994 ASME J. Appl. Mech. 61 629
[21] Takhar H S et al 1993 Arch. Appl. Mech. 63 313
[22] Pop I and Na T Y 1996 Mech. Res. Commun. 23 413
[23] Elbashbeshy E M A and Bazid M A A 2004 Heat Mass Transfer 41 1
[24] Tsai R et al 2008 Int. Commun. Heat Mass Transfer 35 1340
[25] Nazar R et al 2004 Int. J. Eng. Sci. 42 1241
[26] Ishak A et al 2008 Can. J. Phys. 86 853
[27] Mukhopadhyay S et al 2009 Heat Mass Transfer 45 1447
[28] Mukhopadhyay S 2010 Chin. Phys. Lett. 27 124401
[29] Zheng L, Wang L and Zhang X 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 731
[30] Andersson H I et al 2000 Int. J. Heat Mass Transfer 43 69
[31] Bhattacharyya K et al 2011 Chin. Phys. Lett. 28 024701