摘要The reactivity O++T2→OT++T is studied by the quasiclassical trajectory method on the RODRIGO potential energy surface at the collision energies of 1.0, 1.3, 1.6 and 1.9 eV, respectively. The four polarization−dependent generalized differential cross sections (PDDCSs) (2π/σ)(dσ00 /dωt ), (2π/σ)(dσ20 /dωt ), (2π/σ)(dσ22+/dωt ) and (2π/σ)(dσ21− /dωt ) are calculated in the center-of-mass frame. Furthermore, the P(θr ) distribution describing the k–j′ correlation, the distribution of dihedral angle P(φr ) and the distribution of P(θr ,φr ), which describes the angular distribution of product rotational vectors in the form of polar plots in θr and φr are also investigated. The results demonstrate that the stereo-dynamical properties of the title reactivity are sensitive to collision energies.
Abstract:The reactivity O++T2→OT++T is studied by the quasiclassical trajectory method on the RODRIGO potential energy surface at the collision energies of 1.0, 1.3, 1.6 and 1.9 eV, respectively. The four polarization−dependent generalized differential cross sections (PDDCSs) (2π/σ)(dσ00 /dωt ), (2π/σ)(dσ20 /dωt ), (2π/σ)(dσ22+/dωt ) and (2π/σ)(dσ21− /dωt ) are calculated in the center-of-mass frame. Furthermore, the P(θr ) distribution describing the k–j′ correlation, the distribution of dihedral angle P(φr ) and the distribution of P(θr ,φr ), which describes the angular distribution of product rotational vectors in the form of polar plots in θr and φr are also investigated. The results demonstrate that the stereo-dynamical properties of the title reactivity are sensitive to collision energies.
(Molecule transport characteristics; molecular dynamics; electronic structure of polymers)
引用本文:
CHEN Jia-Wu;LIU Xin-Guo**;SUN Hai-Zhu;ZHANG Qing-Gang
. Effect of Collision Energy on the Reactivity O++T2→OT++T by the Quasiclassical Trajectory Method[J]. 中国物理快报, 2011, 28(9): 93101-093101.
CHEN Jia-Wu, LIU Xin-Guo**, SUN Hai-Zhu, ZHANG Qing-Gang
. Effect of Collision Energy on the Reactivity O++T2→OT++T by the Quasiclassical Trajectory Method. Chin. Phys. Lett., 2011, 28(9): 93101-093101.
[1] Rodrigo M et al 2004 J. Chem. Phys. 120 4705
[2] Rodrigo M et al 2005 J. Chem. Phys. 123 174312
[3] Rodrigo M et al 2006 J. Chem. Phys. 124 144301
[4] Rodrigo M et al 2006 J. Chem. Phys. 125 164305
[5] Chu T S et al 2005 J. Phys. Chem. A 109 2050
[6] Panda A N et al 2004 J. Chem. Phys. 121 9343
[7] Xu W W et al 2008 Mol. Phys. 106 1787
[8] Xu W W et al 2009 Chem. Phys. 355 21
[9] Kong H et al 2009 Chin. Phys. Lett. 26 053102
[10] Hu J et al 2005 Phys. Rev. Lett. 95 123001
[11] Duley W W et al 1984 Interstellar Chemistry (New York: Academic) p 86
[12] Ng C Y et al 2002 J. Phys. Chem. A 106 5953
[13] Kim J K et al 1975 J. Chem. Phys. 62 45
[14] Smith D H et al 1978 J. Chem. Phys. 69 308
[15] Burley J D et al 1987 Int. J Mass Spectrom. Ion Process. 80 152
[16] Case D E et al 1978 Mol. Phys. 35 541
[17] Kim S K et al 1987 Faraday Discuss. Chem. Soc. 84 159
[18] Aoiz F J et al 1992 J. Chem. Phys. 97 7423
[19] Wang M L et al 1998 J. Chem. Phys. 109 5446
[20] Wang M L et al 1998 J. Phys. Chem. A 102 20204
[21] Han K L et al 1996 J. Chem. Phys. 105 8699
[22] Chu T S et al 2008 Phys. Chem. Chem. Phys. 10 2431
[23] Aoiz F J et al 1996 J. Chem. Phys. 105 4964
[24] Chen M D et al 2002 Chem. Phys. 283 463
[25] Chen M D et al 2003 J. Chem. Phys. 118 4463
[26] Zhang W Q et al 2009 J. Phys. Chem. A 113 4192
[27] Zhang W Q et al 2010 Chem. Phys. 367 115
[28] Blais N C et al 1977 J. Chem. Phys. 67 1540
[29] Prisant M G et al 1981 J. Chem. Phys. 75 2222
[30] Shafer-Ray N E et al 1995 J. Chem. Phys. 99 7591
[31] Aoiz F J et al 1998 J. Chem. Soc. Faraday. Trans. 94 2483