Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2
C. K. Sumesh1**, K. D. Patel2, V. M. Pathak2, R. Srivastav2
1Department of Physics, Faculty of Technology and Engineering, Charotar University of Science and Technology, CHANGA 388421, Gujarat, India 2Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujatat, India
Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2
C. K. Sumesh1**, K. D. Patel2, V. M. Pathak2, R. Srivastav2
1Department of Physics, Faculty of Technology and Engineering, Charotar University of Science and Technology, CHANGA 388421, Gujarat, India 2Department of Physics, Sardar Patel University, Vallabh Vidyanagar 388120, Gujatat, India
摘要We identically prepared Cu-nMoSe2 (a−plane) and Cu-nMoSe2 (c−plane) Schottky barrier diodes (SBDs) on the same n-type MoSe2 single crystal. The effective Schottky barrier heights (SBHs) and ideality factors were obtained from the current−voltage-temperature (I–V–T) characteristics. The barrier height and ideality factor, estimated from the conventional thermionic emission model by assuming a Gaussian barrier distribution, are highly dependent on temperature. A notable deviation from the theoretical Richardson constant value is also observed in the conventional Richardson plot. The decrease in the experimental barrier height ΦB0 and an increase in the ideality factor n with a decrease in temperature have been explained on the basis of barrier height inhomogeneities at the metal−semiconductor interface. It is proven that the presence of a distribution of barrier heights is responsible for the apparent decrease of the zero bias barrier height. The voltage dependence of the standard deviation causes the increase of the ideality factor at low temperatures. The value of the Richardson constant obtained without considering the inhomogeneous barrier heights is much closer than the theoretical value. The Cu-nMoSe2 (a−plane) Schottky diode shows better results in comparison with the nMoSe2 (c-plane) Schottky diode.
Abstract:We identically prepared Cu-nMoSe2 (a−plane) and Cu-nMoSe2 (c−plane) Schottky barrier diodes (SBDs) on the same n-type MoSe2 single crystal. The effective Schottky barrier heights (SBHs) and ideality factors were obtained from the current−voltage-temperature (I–V–T) characteristics. The barrier height and ideality factor, estimated from the conventional thermionic emission model by assuming a Gaussian barrier distribution, are highly dependent on temperature. A notable deviation from the theoretical Richardson constant value is also observed in the conventional Richardson plot. The decrease in the experimental barrier height ΦB0 and an increase in the ideality factor n with a decrease in temperature have been explained on the basis of barrier height inhomogeneities at the metal−semiconductor interface. It is proven that the presence of a distribution of barrier heights is responsible for the apparent decrease of the zero bias barrier height. The voltage dependence of the standard deviation causes the increase of the ideality factor at low temperatures. The value of the Richardson constant obtained without considering the inhomogeneous barrier heights is much closer than the theoretical value. The Cu-nMoSe2 (a−plane) Schottky diode shows better results in comparison with the nMoSe2 (c-plane) Schottky diode.
(Surface barrier, boundary, and point contact devices)
引用本文:
C. K. Sumesh**;K. D. Patel;V. M. Pathak;R. Srivastav
. Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. 中国物理快报, 2011, 28(8): 87201-087201.
C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav
. Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2. Chin. Phys. Lett., 2011, 28(8): 87201-087201.
[1] Pouzet J and Bernede J C 1994 Mater. Chem. and Phys. 36 304
[2] Huang J M and KelleyD F 2000 Chem. Mater. 12 2825
[3] Harpeness R, Gedanken A, Weissb A M and Slifkin M A 2003 J. Mater. Chem. 13 2603
[4] Cohen S R and Rapoport L 1998 Thin Solid Films 324 190
[5] Hussain A and SushilAuluck 2005 Phys. Rev. B 71 55114
[6] Boker Th and Severin R 2001 Phys. Rev. B 64 235305
[7] Sugai S and Ueda T 1990 Phys. Rev. B 26 6554
[8] Rhoderick E H and Williams R H 1998 Metal-Semiconductor Contact (Oxford: Clarendon) chap 1 p 20
[9] Sze S M 1981 Physics of Semiconductor Devices (New York: Wieley) chap 5 p 254
[10] Donoval D et al 1998 Solid State Electron. 42 235
[11] Wagner L F et al 1983 IEEE Trans. Electron Devices Lett. 4 32
[12] Sumesh C K et al 2008 J. Ovonic. Res. 4 61
[13] Sumesh C K et al 2008 Chalcogenide Lett. 5 177
[14] Padovani F A and Stratton R 1966 Solid State Electron. 9 695
[15] Agarwal M K, PatelP D and Gupta S K 1993 J. Cryst. Growth 129 559
[16] Huang Y S 1984 Chin. J. Phys. 22 43
[17] PiotrowskaA et al 1983 Solid State Electron. 26 179
[18] Zhu S Y et al 2004 Solid State Electron. 48 1205
[19] Werner J H and Guttler H H 1991 J. Appl. Phys. 69 1522
[20] Gumus A et al 2002 J. Appl. Phys. 91 245
[21] Sog Y P et al 1986 Solid State Electron. 29 633
[22] Sullivan J P et al 1991 J. Appl. Phys. 70 7403
[23] Chen Y G et al 2003 J. Appl. Phys. Lett. 82 4367
[24] Karatas S et al 2003 Appl. Surf. Sci. 217 250
[25] Monch W 1867 J. Vac. Sci. Technol. B 17 1867
[26] Zhu Z Y et al 2000 Solid State Electron. 44 663
[27] Wittmer M 1990 Phys. Rev. B 42 5249
[28] Aydin M E et al 2007 J. Appl. Phys. 102 43701
[29] Ayyildiz E et al 2005 J. Appl. Surf. Sci. 252 1153
[30] Tung R T 1992 Phys. Rev. B 45 13509
[31] Duman S et al 2007 Appl. Surf. Sci. 253 3899
[32] Gumus A et al 2002 J. Appl. Phys. 91 245
[33] Chand S and Bala S 2005 Appl. Surf. Sci. 252 358
[34] Chand S and Kumar J 1997 J. Appl. Phys. 82 5005
[35] Chin V W L et al 1990 Solid-State Electron. 36 40731
[36] Dobrocka E and Osvald J 1994 Appl. Phys. Lett. 65 575
[37] Horvath J Z et al 1994 J. Mater. Sci. Eng. B 28 429
[38] Schmitsdor R F et al 1997 Surf. Sci. 324 249
[39] Hidayet C et al 2005 Semicond. Sci. Technol. 20 625
[40] Werner J H and Guttler H H 1993 J. Appl. Phys. 73 1315
[41] Freeouf J L et al 1982 Appl. Phys. Lett. 40 634