Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface
LI Deng-Feng 1**, GUO Zhi-Cheng1, LI Bo-Lin1, DONG Hui-Ning1, XIAO Hai-Yan2
1Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 2Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054
Structural and Electronic Properties of Sulfur-Passivated InAs(001) ( 2×6 ) Surface
LI Deng-Feng 1**, GUO Zhi-Cheng1, LI Bo-Lin1, DONG Hui-Ning1, XIAO Hai-Yan2
1Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing 400065 2Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054
摘要The structural and electronic properties of S-passivated InAs(001)-(2×6) and InAs(001)−(2×1) surfaces are studied by first−principles total-energy calculations. Based on the calculated adsorption energies and electronic properties, we propose that the reconstruction of a S-treated InAs(001) surface should be InAs(001)–(2×6)S rather than InAs(001)−(2×1)S. This is similar to the adsorption behavior of S on a GaAs(001) surface. The Fermi level of an InAs(001)−(2×6)S surface exists above the conduction band minimum by 371 meV and the energy gap becomes 0.145 eV smaller than the clean surface. A strong surface electron accumulation layer is formed and downward band bending is increased, which is in good agreement with recent experiments.
Abstract:The structural and electronic properties of S-passivated InAs(001)-(2×6) and InAs(001)−(2×1) surfaces are studied by first−principles total-energy calculations. Based on the calculated adsorption energies and electronic properties, we propose that the reconstruction of a S-treated InAs(001) surface should be InAs(001)–(2×6)S rather than InAs(001)−(2×1)S. This is similar to the adsorption behavior of S on a GaAs(001) surface. The Fermi level of an InAs(001)−(2×6)S surface exists above the conduction band minimum by 371 meV and the energy gap becomes 0.145 eV smaller than the clean surface. A strong surface electron accumulation layer is formed and downward band bending is increased, which is in good agreement with recent experiments.
[1] Olsson L Ö et al 1996 Phys. Rev. Lett. 76 3626
[2] Taguchi A 2005 J. Cryst. Growth 278 468
[3] Piper L F J et al 2006 Phys. Rev. B 73 195321
[4] Szamota-Leandersson K et al 2009 Surf. Sci. 603 190
[5] Le H Q et al 1998 Appl. Phys. Lett. 72 3434
[6] Bewley W W et al 2000 Appl. Phys. Lett. 76 256
[7] Petrovykh D Y et al 2003 Surf. Sci. 523 231
[8] Odendaal V et al 2008 Phys. Status Solidi C 5 580
[9] Hoffmann J et al 2009 Semicond. Sci. Technol. 24 065008
[10] Bessolov V N and Lebedev M V 1998 Semiconductors 32 1141
[11] Lebedev M V 2002 Prog. Surf. Sci. 70 153
[12] Ohno T and Shiraishi K 1990 Phys. Rev. B 42 11194
[13] Oigawa H et al 1991 Jpn. J. Appl. Phys. 30 L322
[14] Fukuda Y et al 1994 J. Appl. Phys. 76 3632
[15] Fukuda Y et al 1994 J. Appl. Phys. 76 3059
[16] Fukuda Y et al 1996 Appl. Surf. Sci. 92 212
[17] Ow K N and Wang X W 1996 Phys. Rev. B 54 17661
[18] Paget D et al 1996 Phys. Rev. B 53 4615
[19] Shimomura M et al 1996 J. Appl. Phys. 79 4193
[20] Li D F et al 2010 Chin. Phys. Lett. 27 046802
[21] Petrovykh D Y et al 2005 Appl. Phys. Lett. 86 242105
[22] Lvova T V et al 2009 Phys. Solid State. 51 1114
[23] Bailey L R et al 2009 Appl. Phys. Lett. 95 192111
[24] Lebedev M V et al 2007 Semiconductors 41 521
[25] King P D C et al 2008 J. Appl. Phys. 104 083709
[26] Katayama M et al 1991 Jpn. J. Appl. Phys. 30 L786
[27] Fukuda Y et al 1997 Phys. Rev. B 56 1084
[28] Fukuda Y et al 2002 Vacuum 67 37
[29] Lowe M J et al 2002 J. Cryst. Growth 237-239 196
[30] Lowe M J et al 2003 Surf. Sci. 523 179
[31] Lowe M J et al 2003 Surf. Sci. 544 320
[32] Petrovykh D Y et al 2005 Surf. Interface Anal. 37 989
[33] Li D F et al 2008 Solid State Commun. 147 141
[34] Tsukamoto S and Koguchi N 1994 Appl. Phys. Lett. 65 2199
[35] Tsukamoto S and Koguchi N 1994 Jpn. J. Appl. Phys. 33 L1185
[36] Tsukamoto S et al 1997 J. Cryst. Growth 175-176 1303
[37] Shimoda M et al 1998 Surf. Sci. 395 75
[38] Bezryadin N N et al 1999 Semiconductors 33 1301
[39] Tanzer T A et al 1999 Appl. Phys. Lett. 75 2794
[40] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[41] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Andriotis A N 1998 Phys. Rev. B 58 15300
[44] Milman V et al 2000 Int. J. Quantum. Chem. 77 895
[45] Li D F et al 2009 J. Alloy. Compd. 467 557
[46] Shadi A D et al 2007 Appl. Phys. Lett. 90 162112
[47] Watanabe Y and Maeda F 1997 Appl. Surf. Sci. 117-118 735
[48] Konishi T et al 2009 J. Vac. Sci. Technol. B 27 2206