摘要Motion of a rectangular particle in a two-dimensional vertical shear flow of Newtonian fluid and viscoelastic fluid with different parameters is studied using the finite element arbitrary Lagrangian–Eulerian domain method. The results show that the centerline of the channel is a stable equilibrium position for the neutrally buoyant rectangular particle in a vertical shear flow. Inertia causes the particle to migrate towards the centerline of the channel. In addition, a critical elasticity number exists. When the elasticity number is below the critical value, the rectangular particle migrates to the centerline; otherwise the centerline of the channel is apparently no longer a global attractor of trajectories of the particle.
Abstract:Motion of a rectangular particle in a two-dimensional vertical shear flow of Newtonian fluid and viscoelastic fluid with different parameters is studied using the finite element arbitrary Lagrangian–Eulerian domain method. The results show that the centerline of the channel is a stable equilibrium position for the neutrally buoyant rectangular particle in a vertical shear flow. Inertia causes the particle to migrate towards the centerline of the channel. In addition, a critical elasticity number exists. When the elasticity number is below the critical value, the rectangular particle migrates to the centerline; otherwise the centerline of the channel is apparently no longer a global attractor of trajectories of the particle.
[1] Skora J, Kordecka A, Wlosiak P, Madeja Z and Korohoda W 2009 Eur. J. Cell Biol. 88 531
[2] Kim Y W and Yoo J Y 2009 Biosens. Bioelectron. 24 3677
[3] Segré G and Silberberg A 1961 Nature 189 209
[4] Ho B P and Leal L G 1974 J. Fluid Mech. 65 365
[5] Cherukat P, Mclaughlin J B and Graham A L 1994 Int. J. Multiphase Flow 20 339
[6] Krishnan G P and Leighton D T 1995 Phys. Fluid 7 2538
[7] Feng J, Hu H H and Joseph D D 1994 J. Fluid Mech. 277 271
[8] Gauthier F, Goldsmith H L and Mason S G 1971 Rheol. Acta 10 344
[9] Bartram E, Goldsmith H L and Mason S G 1975 Rheol. Acta 14 776
[10] Huang P Y, Feng J, Hu H H and Joseph D D 1997 J. Fluid Mech. 343 73
[11] D'Avino G, Tuccillo T, Maffettone P L, Greco F and Hulsen M A 2010 Comput. Fluids 39 709
[12] D'Avino G, Maffettone P L, Greco F and Hulsen M A 2010 J. Non-Newton. Fluid Mech. 165 466
[13] D'Avino G, Hulsen M A, Snijkers F, Vermant J, Greco F and Maffettone P L 2008 J. Rheol. 52 1331
[14] D'Avino G, Cicale G, Hulsen M A, Greco F, Maffettone P L 2009 J. Non-Newton. Fluid Mech. 157 101
[15] Mortensen P H, Andersson H I, Gillissen J J J and Boersma B J 2008 Int. J. Multiphase Flow 34 678
[16] Jayageeth C, Sharma V I and Singh A 2009 Int. J. Multiphase Flow 35 261
[17] Feng Z G and Michaelides E E 2003 Int. J. Multiphase Flow 29 943
[18] Hu H H, Patankar N A and Zhu M Y 2001 J. Comput. Phys. 169 427