Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers
HE Jin-Ping1, LIANG Xiao-Yan1**, LI Jin-Feng1, ZHENG Li-He2, SU Liang-Bi2, XU Jun2
1State State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, PO BOX 800-211, Shanghai 201800 2Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
Diode-Pumped Soliton and Non-Soliton Mode-Locked Yb:GYSO Lasers
HE Jin-Ping1, LIANG Xiao-Yan1**, LI Jin-Feng1, ZHENG Li-He2, SU Liang-Bi2, XU Jun2
1State State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, PO BOX 800-211, Shanghai 201800 2Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050
摘要Diode-pumped soliton and non-soliton mode-locked Yb:(Gd1−xYx)2SiO5 (x = 0.5) lasers are demonstrated. Pulses as short as 1.4 ps are generated for the soliton mode−locked operation, with a pair of SF10 prisms as the negative dispersion elements. The central wavelength is 1056 nm and the repetition rate is 48 MHz. For the non-soliton mode locking, the output power could achieve ∼1.2 W, and the pulse width is about 20 ps. The critical pulse energy in the soliton-mode locked operation against the Q-switched mode locking is much lower than the critical pulse energy in the non-soliton mode-locked operation.
Abstract:Diode-pumped soliton and non-soliton mode-locked Yb:(Gd1−xYx)2SiO5 (x = 0.5) lasers are demonstrated. Pulses as short as 1.4 ps are generated for the soliton mode−locked operation, with a pair of SF10 prisms as the negative dispersion elements. The central wavelength is 1056 nm and the repetition rate is 48 MHz. For the non-soliton mode locking, the output power could achieve ∼1.2 W, and the pulse width is about 20 ps. The critical pulse energy in the soliton-mode locked operation against the Q-switched mode locking is much lower than the critical pulse energy in the non-soliton mode-locked operation.
[1] Gattass R R and Mazur E, 2008 Nature Photon. 2 219
[2] He F, Xu H, Cheng Y, Ni J L, Xiong H, Xu Z Z, Sugioka K and Midorikawa K 2010 Opt. Lett. 35 1106
[3] Wellershoff S S, Hohlfeld J, Gudde J and Matthias E 1999 Appl. Phys. A 69 99
[4] Mannion P T, Favre S, Ivanov D, Connor G M and Glynn T J 2005 Proc. 3rd Int. WLT-Conference on Lasers in Manufacturing (Munich, June 2005)
[5] Meijer J, Du K, Gillner A and Hoffmann D 2002 CIRP Annals-Manufacturing Technology 51 531
[6] Hönninger C, Zhang G, Keller U and Giesen A 1995 Opt. Lett. 20 2402
[7] Innerhofer E, Südmeyer T, Brunner T F, Höring R, Aschwanden A, Paschotta R, Hänninger C, Kumkar M and Keller U 2003 Opt. Lett. 28 367
[8] Kisel V E, Troshin A E, Shcherbitsky V G, Kuleshov N V, Matrosov V N, Matrosova T A, Kupchenko M I, Brunner F, Paschotta R, Genoud F M and Keller U 2005 Opt. Lett. 30 1150
[9] Brunner F, Südmeyer T, Innerhofer E, Genoud F M, Paschotta R, Kisel V E, Scherbitsky V G, Kuleshov N V, Gao J, Contag K, Giesen A and Keller U 2002 Opt. Lett. 27 1162
[10] Paunescu G, Hein J and Sauerbrey R 2004 Appl. Phys. B 79 555
[11] Thibault F, Pelenc D, Druon F, Zaouter Y, Jacquemet M and Georges P 2006 Opt. Lett. 31 1555
[12] Li W X, Hao Q, Zhai H, Zeng H P, Lu W, Zhao G J, Zheng L H, Su L B and Xu J 2007 Opt. Express 15 2354
[13] Du J, Liang X Y, Xu Y, Li R X and Xu Z Z 2006 Opt. Express 14 3333
[14] Li W X, Hao Q, Ding L E, Zhao G J, Zheng L H, Xu J and Zeng H P 2008 IEEE J. Quantum Electron. 44 567
[15] Zhou B B, Wei Z Y, Zhang Y D, Zhong X, Teng H, Zheng L H, Su L B and Xu J 2009 Opt. Lett. 34 31