摘要New measurements of fission fragment and alpha particle induced surface damage in the most sensitive and commonly used nuclear track detector CR-39 are presented here. Precisely designed and optimized exposure and chemical etching experiments are employed to unfold the structure of radiation induced surface damage (RISD). Delay in the startup of the chemical etching of latent tracks or surface radiation damage is measured and is found to contain important information about the structure of the surface damage. Simple atomic scale pictures of RISD and its chemical etching are developed in an empirical manner. Theoretical model and experimental findings coherently compose a realistic picture of early or femtosecond evolution of RISD.
Abstract:New measurements of fission fragment and alpha particle induced surface damage in the most sensitive and commonly used nuclear track detector CR-39 are presented here. Precisely designed and optimized exposure and chemical etching experiments are employed to unfold the structure of radiation induced surface damage (RISD). Delay in the startup of the chemical etching of latent tracks or surface radiation damage is measured and is found to contain important information about the structure of the surface damage. Simple atomic scale pictures of RISD and its chemical etching are developed in an empirical manner. Theoretical model and experimental findings coherently compose a realistic picture of early or femtosecond evolution of RISD.
(General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))
(Reinforced polymers and polymer-based composites)
引用本文:
Mukhtar Ahmed Rana*
. Radiation-Induced Nano-Explosions at the Solid Surface: Near Surface Radiation Damage in CR-39 Polymer[J]. 中国物理快报, 2011, 28(8): 83203-083203.
Mukhtar Ahmed Rana*
. Radiation-Induced Nano-Explosions at the Solid Surface: Near Surface Radiation Damage in CR-39 Polymer. Chin. Phys. Lett., 2011, 28(8): 83203-083203.
[1] Nordlund K, Kelnonen J, Ghaly M and Averback R S 1999 Nature 398 49
[2] Watt F, Breese M B H, Bettiol A A and van Kan J A 2007 Mater. Today 10 20
[3] Spohr R 2005 Radiat. Meas. 40 191
[4] Fleischer R L, Price P B, Symes E M and Miller D S 1964 Science 143 349
[5] Rana M A 2010 Nucl. Instrum. Methods B 268 165
[6] Trachenko K, Dove M T, Salje E K H, Todorov I, Smith W, Pruneda M and Artacho E 2005 Mol. Sim. 31 355
[7] Arnoldbik W M, Knoesen D, Tomozeiu N and Habraken F H P M 2008 Nucl. Instrum. Methods B 258 199
[8] Rana M A 2010 Nucl. Instrum. Methods A 618 176
[9] Ghaly M and Averback R S 1994 Phys. Rev. Lett. 72 364
[10] Bashir S, Rafique M S and Husinsky W 2009 Appl. Surf. Sci. 255 8372
[11] Apel P Yu, Blonskaya I V, Cornelius T W, Neumann R, Spohr R, Schwartz K, Skuratov V A and Trautmann C 2009 Radiat. Meas. 44 759
[12] Muret P, Pernot J, Teraji T and Itoh T 2008 Appl. Phys. Exp. 1 035003
[13] Queisser H J and Haller E E 1998 Science 281 945
[14] SéguinF H et al 2003 Rev. Sci. Instrum. 72 975
[15] Vilensky A I, Berezkin V V, Sobolev V D, Sabbatovsky K G, Kochnev Yu K, Vlasov S V and Mchedlishvili B V 2009 Colloid J. 71 470
[16] Khan E U, Husaini S N, Malik F, Sajid M, Karim S and Qureshi I E 2002 Radiat. Meas. 35 41
[17] Rana M A 2008 Nucl. Instrum. Meth. A 592 354
[18] Yamauchi T 2003 Radiat. Meas. 36 73
[19] Yamauchi T, Mineyama D, Nakai H, Oda K and Yasuda N 2003 Nucl. Instrum. Methods B 208 149
[20] Yamauchi T, Yasuda N, Asuka T, Izumi K, Masutani T, Oda K and Barillon R 2005 Nucl. Instrum. Methods B 236 318
[21] Rana M A, Khan E U, Shahzad M I, Manzoor S, Sher G and Qureshi I E 2007 Radiat. Meas. 42 125
[22] Apel P Yu, Schulz A, Spohr R, Trautmann C and Vutsadakis V 1997 Nucl. Instrum. Methods B 131 55
[23] Apel P Yu, Akimenko A P, Blonskaya I V, Cornelius T, Neumann R, Schwartz K, Spohr R and Trautmann C 2006 Nucl. Instrum. Methods B 245 284
[24] Apel P Yul, Schulz A, Spohr R, Trautmann C, Vutsadakis V 1998 Nucl. Instrum. Methods B 146 468
[25] Apel P 2003 Nucl. Instrum. Methods B 208 11
[26] Hughes I G, Burgdörfer J, Folkerts L, Havener C C, Overbury S H, Robinson M T, Zehner D M, Zeijlmans van Emmichoven P A and Meyer F W 1993 Phys. Rev. Lett. 71 291
[27] Hedström M and Cheng H P 2000 J. Phys. Chem. B 104 4633
[28] El-Said A S, Meissl W, Simon M C, Crespo López-Urrutia J R, Lemell C, Burgdörfer J, Gebeshuber I C, Winter H P, Ullrich J, Trautmann C, Toulemonde M and Aumayr F 2007 Nucl. Instrum. Methods B 258 167
[29] Aumayr F, El-Said A S, Meissl W 2008 Nucl. Instrum. Methods B 266 2729
[30] Popok V N, Prasalovich S V, Samuelsson M, Campbell E E B 2002 Rev. Sci. Instrum. 73 4283
[31] Nordlund K and Mattila T 1997 Radiat. Effects Def. Solids 142 459
[32] Nagy P, Szabó B, Szabó Zs, Havancsák K, Biró L P and Gyulai J 2001 Ultramicroscopy 86 31
[33] Zeigler J F 2004 Nucl. Instrum. Meth. B 219-220 1027
[34] Schiwietz G, Grande P, Skogvall B, Biersack J P, Köhrbrück R, Sommer K, Schmoldt A, Goppelt P, Kádár I, Ricz S and Stettner U 1992 Phys. Rev. Lett. 69 628
[35] Zewail A H 2000 J. Phys. Chemis. A 104 5660
[36] Rana M A 2008 Nucl. Instrum. Meth. B 266 271
[37] Rana M A, Osipowicz T, Choi H W, Breese M B H and Chua S J 2003 Chem. Phys. Lett. 380 105
[38] Rana M A 2008 Ann. Nucl. Energy 35 1580