摘要An analysis is made to study boundary layer flow and heat transfer over an exponentially shrinking sheet. Using similarity transformations in exponential form, the governing boundary layer equations are transformed into self-similar nonlinear ordinary differential equations, which are then solved numerically using a very efficient shooting method. The analysis reveals the conditions for the existence of steady boundary layer flow due to exponential shrinking of the sheet and it is found that when the mass suction parameter exceeds a certain critical value, steady flow is possible. The dual solutions for velocity and temperature distributions are obtained. With increasing values of the mass suction parameter, the skin friction coefficient increases for the first solution and decreases for the second solution.
Abstract:An analysis is made to study boundary layer flow and heat transfer over an exponentially shrinking sheet. Using similarity transformations in exponential form, the governing boundary layer equations are transformed into self-similar nonlinear ordinary differential equations, which are then solved numerically using a very efficient shooting method. The analysis reveals the conditions for the existence of steady boundary layer flow due to exponential shrinking of the sheet and it is found that when the mass suction parameter exceeds a certain critical value, steady flow is possible. The dual solutions for velocity and temperature distributions are obtained. With increasing values of the mass suction parameter, the skin friction coefficient increases for the first solution and decreases for the second solution.
Krishnendu Bhattacharyya
. Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. 中国物理快报, 2011, 28(7): 74701-074701.
Krishnendu Bhattacharyya
. Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet. Chin. Phys. Lett., 2011, 28(7): 74701-074701.
[1] Fisher E G 1976 Extrusion of Plastics (New York: Wiley)
[2] Altan T, Oh S and Gegrl H 1979 Metal Forming Fundamentals and Applications (Metals Park, OH: American Society of Metals).
[3] Crane L J 1970 Z. Angew. Math. Phys. 21 645
[4] Gupta P S et al 1977 Can. J. Chem. Eng. 55 744
[5] Chen C K et al 1988 J. Math. Anal. Appl. 135 568
[6] Pavlov K B 1974 Magn. Gidrod. 10 146
[7] Sankara K K and Watson L T 1985 ZAMP 36 845
[8] Andersson H I and Dandapat B S 1991 Stability Appl. Anal. Contin. Media 1 339
[9] Vajravelu K 2001 Appl. Math. Comput. 124 281
[10] Cortell R 2007 Appl. Math. Comput. 184 864
[11] Cortell R 2008 Phys. Lett. A 372 631
[12] Wang C Y 1990 Q. Appl. Math. 48 601
[13] Miklavčič M and Wang C Y 2006 Q. Appl. Math. 64 283
[14] Hayat T, Abbas Z and Sajid M 2007 ASME J. Appl. Mech. 74 1165
[15] Hayat T, Javed T and Sajid M 2008 Phys. Lett. A 372 3264
[16] Hayat T, Abbas Z and Ali N 2008 Phys. Lett. A 372 4698
[17] Fang T and Zhang J 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 2853
[18] Noor N F M, Kechil S a and Hashim I 2010 Commun. Nonlin. Sci. Numer. Simulat. 15 144
[19] Fang T, Yao S, Zhang J and Aziz A 2010 Commun. Nonlin. Sci. Numer. Simulat. 15 1831
[20] Cortell R 2010 Appl. Math. Comput. 217 4086
[21] Fang T, Zhang J and Yoa S 2009 Chin. Phys. Lett. 26 014703
[22] Merkin J H and Kumaran V 2010 Eur. J. Mech. B Fluids 29 357
[23] Wang C Y 2008 Int. J. Nonlin. Mech. 43 377
[24] Ishak A, Lok Y Y and Pop I 2010 Chem. Eng. Commun. 197 1417
[25] Bhattacharyya K and Layek G C 2011 Int. J. Heat Mass Trans. 54 302
[26] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Int. J. Heat Mass Trans. 54 308
[27] Magyari E et al 1999 J. Phys. D. Appl. Phys. 32 577
[28] Elbashbeshy E M a 2001 Arch. Mech. 53 643
[29] Khan S K and Sanjayanand E 2005 Int. J. Heat Mass Trans. 48 1534
[30] Partha M K, Murthy P V S N and Rajasekhar G P 2005 Heat Mass Trans. 41 360
[31] Sanjayanand E et al 2006 Int. J. Therm. Sci. 45 819
[32] Al-Odat M Q, Damseh R a and Al-Azab T A 2006 Int. J. Appl. Mech. Eng. 11 289
[33] Sajid M and Hayat T 2008 Int. Commun. Heat Mass Trans. 35 347