摘要We report 12.8 W supercontinuum generation with a high optical-to-optical conversion efficiency of up to 85% in an all-fiber device. This is achieved by using an all-fiber picosecond master oscillator power amplifier laser, which has an output pigtail double clad fiber, to pump a 3-m photonic crystal fiber with the core at one end enlarged by adiabatically collapsing two inner layers of air holes while keeping other holes open. Our experimental results show that the short-wavelength generation is due to dispersive wave trapping by redshifted solitons.
Abstract:We report 12.8 W supercontinuum generation with a high optical-to-optical conversion efficiency of up to 85% in an all-fiber device. This is achieved by using an all-fiber picosecond master oscillator power amplifier laser, which has an output pigtail double clad fiber, to pump a 3-m photonic crystal fiber with the core at one end enlarged by adiabatically collapsing two inner layers of air holes while keeping other holes open. Our experimental results show that the short-wavelength generation is due to dispersive wave trapping by redshifted solitons.
WANG Yan-Bin**;HOU Jing**;CHEN Zi-Lun;CHEN Sheng-Ping;SONG Rui;LI Ying;YANG Wei-Qiang;LU Qi-Sheng
. High-Efficiency Supercontinuum Generation at 12.8W in an All-Fiber Device[J]. 中国物理快报, 2011, 28(7): 74208-074208.
WANG Yan-Bin**, HOU Jing**, CHEN Zi-Lun, CHEN Sheng-Ping, SONG Rui, LI Ying, YANG Wei-Qiang, LU Qi-Sheng
. High-Efficiency Supercontinuum Generation at 12.8W in an All-Fiber Device. Chin. Phys. Lett., 2011, 28(7): 74208-074208.
[1] Shi K, Li P, Yin S and Liu Z 2004 Opt. Express 12 2096
[2] Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler S 2001 Opt. Lett. 26 608
[3] Lindfors K, Kalkbrenner T, Stoller P and Sandoghdar V 2004 Phys. Rev. Lett. 93 037401
[4] Kudlinski A, George A K, Knight J C, Travers J C, Rulkov A B, Popov S V and Taylor J R 2006 Opt. Express 14 5715
[5] Travers J C, Popov S V, and Taylor J R 2005 Opt. Lett. 30 3132
[6] Kudlinski A and Mussot A 2008 Opt. Lett. 33 2407
[7] Kudlinski A, Pureur V, Bouwmans G, and Mussot A 2008 Opt. Lett. 33 2488
[8] Travers J C, Rulkov A B, Cumberland B A, Popov S V and Taylor J R 2008 Opt. Express 16 14435
[9] Cumberland B A, Travers J C, Popov S V and Taylor J R 2008 Opt. Express 16 5954
[10] Xiao L M, Demokan M S, Jin W, Wang Y P and Zhao C L 2007 J. Lightwave Technol. 25 3563
[11] Town G E and Lizier J T 2001 Opt. Lett. 26 1042
[12] Chen Z, Xiong C, Xiao L M, Wadsworth W J and Birks T A 2009 Opt. Lett. 34 2240
[13] Chen S P, Chen H W, Hou J and Liu Z J 2009 Opt. Express 17 24008
[14] Saitoh K and Koshiba M 2005 Opt. Express 13 267
[15] Boris T K, Thomas P W, Gilles R, Daniel M, Lindsay C B, C Martijn de Sterke and Ross C M 2002 J. Opt. Soc. Am. B 19 2331
[16] Jeunhomme L B 1990 Single-Mode Fiber Optics (MarcelDekker: New York) p 86
[17] Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 796
[18] Dane R A, de Sterke C M and Benjamin J E 2006 Opt. Express 14 11997
[19] Nishizawa N and Goto T 2002 Opt. Lett. 27 152
[20] Akhmediev N and Karlsson M 1995 Phys. Rev. A 51 2602