Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser
ZHANG Jin-Chuan1, 2, WANG Li-Jun1**, LIU Wan-Feng1, LIU Feng-Qi1, YIN Wen1, LIU Jun-Qi1, LI Lu1, WANG Zhan-Guo1
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Department of Electronic Engineering, Tsinghua University, Beijing 100084
Room-Temperature Continuous-Wave Operation of a Tunable External Cavity Quantum Cascade Laser
ZHANG Jin-Chuan1, 2, WANG Li-Jun1**, LIU Wan-Feng1, LIU Feng-Qi1, YIN Wen1, LIU Jun-Qi1, LI Lu1, WANG Zhan-Guo1
1Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Department of Electronic Engineering, Tsinghua University, Beijing 100084
摘要A room-temperature cw operation of a tunable external cavity (EC) quantum cascade laser (QCL) at an emitting wavelength of 4.6 µm is presented. Strain−compensation combined with two-phonon resonance in an active region design promises low threshold current density. A very low threshold current density of 1.47 kA/cm2 for an EC−QCL operated in cw mode is realized. Single-mode cw operation with a side-mode suppression ratio of 20 dB and a wide tuning range of over 110 cm-1 are achieved. Moreover, an even wider tuning range of over 135 cm−1 is obtained in pulsed mode at room temperature.
Abstract:A room-temperature cw operation of a tunable external cavity (EC) quantum cascade laser (QCL) at an emitting wavelength of 4.6 µm is presented. Strain−compensation combined with two-phonon resonance in an active region design promises low threshold current density. A very low threshold current density of 1.47 kA/cm2 for an EC−QCL operated in cw mode is realized. Single-mode cw operation with a side-mode suppression ratio of 20 dB and a wide tuning range of over 110 cm-1 are achieved. Moreover, an even wider tuning range of over 135 cm−1 is obtained in pulsed mode at room temperature.
[1] Kosterev A, Wysocki G, Bakhirkin Y, So S, Lewicki R, Fraser M, Tittel F and Curl R 2008 Appl. Phys. B: Lasers Opt. 90 165
[2] Razeghi M 2009 Proc. SPIE 7230 723011
[3] Luo G P, Peng C, Le H Q, Pei S S, Hwang W Y, Ishaug B, Um J, Baillargeon J N and Lin C H 2001 Appl. Phys. Lett. 78 2834
[4] Luo G P, Peng C, Le H Q, Pei S S, Lee H, Hwang W Y, Ishaug B and Zheng J 2002 IEEE J. Quantum Electron. 38 486
[5] Mohan A, Wittmann A, Hugi A, Blaser S, Giovannini M and Faist J 2007 Opt. Lett. 32 2792
[6] Wittmann A, Hugi A, Gini E, Hoyler N and Faist J 2008 IEEE J. Quantum Electron. 44 1083
[7] Hugi A, Terazzi R, Bonetti Y, Wittmann A, Fischer M, Beck M, Faist J and Gini E 2009 Appl. Phys. Lett. 95 061103
[8] Maulini R, Dunayevskiy I, Lyakh A, Tsekoun A, Patel C K N, Diehl L, Pflug C and Capasso F 2009 Electron. Lett. 45 107
[9] Yao Y, Charles W O, Tsai T, Chen J X, Wysocki G and Gmachl C F 2010 Appl. Phys. Lett. 96 211106
[10] Liu F Q, Li L, Wang L J, Liu J Q, Zhang W, Zhang Q D, Liu W F, Lu Q Y and Wang Z G 2009 Appl. Phys. A 97 527
[11] Bai Y, Slivken S, Darvish S R and Razeghi M 2008 Appl. Phys. Lett. 93 021103
[12] Faist J, Capasso F, Sirtori C, Sivco D L, Hutchinson A L and Choet A Y 1995 Appl. Phys. Lett. 66 538
[13] Hugi A, Maulini R and Faist J 2010 Semicond. Sci. Technol. 25 083001