Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions
LIU Yu1**, CHENG Fang2
1SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 2Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions
LIU Yu1**, CHENG Fang2
1SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083 2Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410004
摘要We theoretically investigate the influence of both Rashba spin-orbit interaction (RSOI) and Dresselhaus spin-orbit interaction (DSOI) on electron spin states, electron distribution and the optical absorption of a quantum dot. Our theoretical results show that the interplay between RSOI and DSOI results in an effective periodic potential, which consequently breaks the rotational symmetry and makes the quantum dot behave like two laterally coupled quantum dots. In the presence of RSOI and/or DSOI the spin is no longer a conserved quantity and its magnitude can be tuned by changing the strength of RSOI and/or DSOI. By reversing the direction of the perpendicular electric field, we can rotate the spatial distribution. This property provides us with a new way to control quantum states in a quantum dot by electrical means.
Abstract:We theoretically investigate the influence of both Rashba spin-orbit interaction (RSOI) and Dresselhaus spin-orbit interaction (DSOI) on electron spin states, electron distribution and the optical absorption of a quantum dot. Our theoretical results show that the interplay between RSOI and DSOI results in an effective periodic potential, which consequently breaks the rotational symmetry and makes the quantum dot behave like two laterally coupled quantum dots. In the presence of RSOI and/or DSOI the spin is no longer a conserved quantity and its magnitude can be tuned by changing the strength of RSOI and/or DSOI. By reversing the direction of the perpendicular electric field, we can rotate the spatial distribution. This property provides us with a new way to control quantum states in a quantum dot by electrical means.
(Intrinsic properties of excitons; optical absorption spectra)
引用本文:
LIU Yu**;CHENG Fang
. Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions[J]. 中国物理快报, 2011, 28(6): 67303-067303.
LIU Yu**, CHENG Fang
. Tuning Electron Spin States in Quantum Dots by Spin-Orbit Interactions. Chin. Phys. Lett., 2011, 28(6): 67303-067303.
[1] Ashoori R C 1996 Nature 379 413
[2] Kastner M A 1993 Phys. Today 46 (1) 24
[3] Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
[4] Hofmann F, Heinzel T, Wharam D A, Kotthaus J P, Böhm G, Klein W, Tränkle G and Weimann G 1995 Phys. Rev. B 51 13872
[5] Kroutvar M, Ducommun Y, Heiss D, Bichler M, Schuh D, Abstreiter G and Finley J J 2004 Nature 432 81
[6] Recher P, Sukhorukov E V and Loss D 2000 Phys. Rev. Lett. 85 1962
[7] Komiyama S, Astafiev O, Antonov V, Kutsuwa T and Hirai H 2000 Nature 403 405
[8] Waks E, Inoue K, Santori C, Fattal D, Vuckovic J, Solomon G S and Yamamoto Y 2002 Nature 420 762
[9] Fattal D, Diamanti E, Inoue K and Yamamoto Y 2004 Phys. Rev. Lett. 92 037904
[10] Bonadeo N H, Erland J, Gammon D, Park D, Katzer D S and Steel D G 1998 Science 282 1473
[11] Li X Q, Wu Y W, Steel D, Gammon D, Stievater T H, Katzer D S, Park D, Piermarocchi C and Sham L J 2003 Science 301 809
[12] Tarucha S, Austing D G, Honda T, van der Hage R J and Kouwenhoven L P 1996 Phys. Rev. Lett. 77 3613
[13] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[14] Chakraborty T and Pietiläinen P 2005 Phys. Rev. B 71 113305
[15] Ciorga M, Wensauer A, Ladriere M P, Korkusinski M, Kyriakidis J, Sachrajda A S and Hawrylak P 2002 Phys. Rev. Lett. 88 256804
[16] Grundler D 2000 Phys. Rev. Lett. 84 6074
[17] Nitta J, Akazaki T, Takayanagi H and Enoki T 1997 Phys. Rev. Lett. 78 1335
[18] Nitta J, Meijer F E and Takayanagi H 1999 Appl. Phys. Lett. 75 695
[19] König M, Tschetschetkin A, Hankiewicz E M, Sinova J, Hock V, Daumer V, Schäfer M, Becker C R, Buhmann H and Molenkamp L W 2006 Phys. Rev. Lett. 96 076804
[20] Rashba E I 1960 Sov. Phys. Solid State 2 1109
[21] Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039
[22] Dresselhaus G 1955 Phys. Rev. 100 580
[23] Yang W and Chang K 2006 Phys. Rev. B 73 113303
[24] Yang W and Chang K 2006 Phys. Rev. B 74 193314
[25] Yang W, Chang K and Zhang S C 2008 Phys. Rev. Lett. 100 056602
[26] Li J, Chang K, Hai G Q and Chan K S 2008 Appl. Phys. Lett. 92 152107
[27] Frolov S M, Lüscher S, Yu W, Ren Y, Folk J A and Wegscheider W 2009 Nature 458 868
[28] Studer M, Schön S, Ensslin K and Salis G 2009 Phys. Rev. B 79 045302
[29] Kaneko T, Koshino M and Ando T 2008 Phys. Rev. B 78 245303
[30] Li Y and Li Y Q 2008 Phys. Rev. B 78 195325
[31] Maksym P A, Nishi Y, Austing D G, Hatano T, Kouwenhoven L P, Aoki H and Tarucha S 2009 Phys. Rev. B 79 115314
[32] Rössler C, Küng B, Dröscher S, Choi T, Ihn T, Ensslin K and Beck M 2010 Appl. Phys. Lett. 97 152109
[33] Ellenberger C, Ihn T, Yannouleas C, Landman U, Ensslin K, Driscoll D and Gossard A C 2006 Phys. Rev. Lett. 96 126806
[34] Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, Kam A, Lapointe J, Korkusinski M and Hawrylak P 2006 Phys. Rev. Lett. 97 036807
[35] Sheng J S and Chang K 2006 Phys. Rev. B 74 235315
[36] Sheng J S and Chang K 2008 J. Phys.: Condens. Matter 20 025222
[37] 1982 Physics of Group IV Elements and III–V Compounds Landolt-Börnstein (New Series) Group III ed Madelung O (Berlin: Springer-Verlag) vol 17