Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model
LIU Zhao-Sen1**, Sechovský Vladimir2, Diviš Martin2
1Faculty of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 2Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model
LIU Zhao-Sen1**, Sechovský Vladimir2, Diviš Martin2
1Faculty of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044 2Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
摘要A Usov-type quantum model based on a mean-field approximation is utilized to simulate the magnetic structure of an assumed rare-earth nanoparticle consisting of an antiferromagnetic core and a paramagnetic outer shell. We study the magnetic properties in the presence and absence of an external magnetic field. Our simulation results show that the magnetic moments in the core region orientate antiferromagnetically in zero external magnetic field; an applied magnetic field rotates all of the magnetic moments in the paramagnetic shell completely to the field direction, and turns those in the core (which tries to maintain its original antiferromagnetic structure) towards the orientation in some degree; and the paramagnetic shell does not have a strong influence on the magnetic configuration of the core.
Abstract:A Usov-type quantum model based on a mean-field approximation is utilized to simulate the magnetic structure of an assumed rare-earth nanoparticle consisting of an antiferromagnetic core and a paramagnetic outer shell. We study the magnetic properties in the presence and absence of an external magnetic field. Our simulation results show that the magnetic moments in the core region orientate antiferromagnetically in zero external magnetic field; an applied magnetic field rotates all of the magnetic moments in the paramagnetic shell completely to the field direction, and turns those in the core (which tries to maintain its original antiferromagnetic structure) towards the orientation in some degree; and the paramagnetic shell does not have a strong influence on the magnetic configuration of the core.
LIU Zhao-Sen**;SechovskýVladimir;DiviMartin
. Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model[J]. 中国物理快报, 2011, 28(6): 67302-067302.
LIU Zhao-Sen**, Sechovský, Vladimir, Divi, Martin
. Magnetic Properties of a Rare-Earth Antiferromagnetic Nanoparticle Investigated with a Quantum Simulation Model. Chin. Phys. Lett., 2011, 28(6): 67302-067302.
[1] Brown Jr W F 1966 Magnetostatic Principles in Ferromagnetism (New York: Springer)
[2] Binder K and Heermann D W 1992 Monte Carlo Simulation in Statistical Physics (Berlin: Springer)
[3] Usov N A and Gudoshnikov S A 2006 J. Magn. Magn. Mater. 300 164
[4] Wang L, Ding J, Kong H Z, Li Y and Feng Y P 2001 Phys. Rev. B 64 214410
[5] Nazaretski E, Pelekhov D V, Martin I, Zalalutdinov M, Ponarin D, Smirnov A, Hammel P C and Movshovich R 2009 Phys. Rev. B 79 132401
[6] Younsi K, Russier V and Bessais L 2010 J. Appl. Phys. 107 083916
[7] Zhang H W, Rong C B, Du X B, Zhang S Y and Shen B G 2004 J. Magn. Magn. Mater. 278 127
[8] Fischer R, Schrefl T, Kronmfiller H and Fidler J 1996 J. Magn. Magn. Mater. 153 35
[9] Griffiths M K, Bishop J E L, Tucker J W and Davies H A 2001 J. Magn. Magn. Mater. 234 331
[10] Fukunaga H, Ikeda M and Inuzuka A 2007 J. Magn. Magn. Mater. 310 2581
[11] Liu Z-S, Diviš M and Sechovský V 2011 J. Phys.: Condens. Matter 23 016002
[12] Lu B, Dong X L, Huang H, Zhang X F, Zhu X G, Lei J P and Sun J P 2008 J. Magn. Magn. Mater. 320 1106
[13] Markovich V, Jung G, Fita I, Mogilyansky C D, Wu X, Wisniewski A, Puzniak R, Titelman L, Vradman L, Herskowitz M and Gorodetskya G 2010 J. Magn. Magn. Mater. 322 1311
[14] Chen D X, Pascu O, Roig A and Sanchez A 2010 J. Magn. Magn. Mater. 322 3834
[15] Li Zhengquan and Zhang Yong 2009 Langmuir 25 12015
[16] Bhowmik R N and Ranganathan R 2007 Solid State Commun. 141 365
[17] Guo H, Li Z, Qian H, Hu Y and Niagara M I 2010 Nanotechnology 21 125602
[18] Rossi D, Marazza R and Ferro R 1978 J. Less-Common Met. 58 203
[19] Mihalik M, Svoboda P, Rusz J, Diviš M and Sechovský V 2005 Physica B 367 19
[20] Bourée-Vigneron F, Pinot M, Golab M, Szytuä A and Oleś A 1990 J. Magn. Magn. Mater. 86 383
[21] Bara J J, Hrynkiewicz H U, Milos A and Szytuä A 1990 J. Less-Common Met. 161 185
[22] Vulliet P, Tomala K, Malaman B, Venturini G and Sanchez J P 1993 J. Magn. Magn. Mater. 119 301
[23] Noakes D R, Umarji A M and Shenoy G K 1983 J. Magn. Magn. Mater. 39 309
[24] Wakefield G, Keron H A, Dobson P J and Hutchison J L 1999 J. Colloid Interface Sci. 215 179
[25] Gu F, Wang S F, Lü M K, Zhou G J, Liu S W, Xu D and Yuan D R 2003 Chem. Phys. Lett. 380 185
[26] Restrepo J, Labaye Y, Berger L and Greneche J M 2004 J. Magn. Magn. Mater. 272–276 681
[27] Crisan O, Angelakeris M, Flevaris N K, Sobal N and Giersig M 2003 Sensors and Actuators A 106 130
[28] Usov N A, Kurkina L G and Tucker J W 2002 J. Magn. Magn. Mater. 242–245 1009
[29] Hinzke D and Nowak U 1999 Comput. Phys. Commun. 121–122 334
[30] LaBonte A E 1969 J. Appl. Phys. 40 2453
[31] Liu Z-S, Richter M, Diviš M and Eschrig H 1999 Phys. Rev. B 60 7981
[32] Liu Z-S 2001 Phys. Rev. B 64 144407
[33] Liu Z-S, Diviš M and Sechovský V 2008 Phys. Rev. B 78 214409
[34] Liu Z-S, Diviš M and Sechovský V 2009 Chin. Phys. Lett. 26 067501
[35] Liu Z S, Diviš M and Sechovský V 2009 Chin. Phys. Lett. 26 107504
[36] Liu Z S, Diviš M and Sechovský V 2009 Phys. Status Solidi B 246 448