Voronoi Structural Evolution of Bulk Silicon upon Melting
ZHANG Shi-Liang1, ZHANG Xin-Yu1, WANG Lin-Min1, QI Li1, ZHANG Su-Hong1, ZHU Yan1,2, LIU Ri-Ping1**
1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 2College of Physics and Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066004
Voronoi Structural Evolution of Bulk Silicon upon Melting
ZHANG Shi-Liang1, ZHANG Xin-Yu1, WANG Lin-Min1, QI Li1, ZHANG Su-Hong1, ZHU Yan1,2, LIU Ri-Ping1**
1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 2College of Physics and Chemistry, Hebei Normal University of Science and Technology, Qinhuangdao 066004
摘要The Voronoi structural evolution of silicon upon melting is investigated using a molecular dynamics simulation. At temperatures below the melting point, the solid state system is identified to have a four-fold coordination structure 〈4,0,0,0〉. As the temperature increases, the five−fold coordination 〈2,3,0,0〉 and six−fold coordination structures 〈2,2,2,0〉 and 〈0,6,0,0〉 are observed. This is explained in terms of increasing atomic displacement due to thermal motion and the trapping of the moving atoms by others. At temperatures above the melting point, nearly all of the four-fold coordination structures grows into multiple-fold coordination ones.
Abstract:The Voronoi structural evolution of silicon upon melting is investigated using a molecular dynamics simulation. At temperatures below the melting point, the solid state system is identified to have a four-fold coordination structure 〈4,0,0,0〉. As the temperature increases, the five−fold coordination 〈2,3,0,0〉 and six−fold coordination structures 〈2,2,2,0〉 and 〈0,6,0,0〉 are observed. This is explained in terms of increasing atomic displacement due to thermal motion and the trapping of the moving atoms by others. At temperatures above the melting point, nearly all of the four-fold coordination structures grows into multiple-fold coordination ones.
[1] Mei Q S and Lu K 2007 Prog. Mater. Sci. 52 1175
[2] Cahn R W 2001 Nature 413 582
[3] Tallon J L 1978 Nature 276 849
[4] Cahn R W 1978 Nature 273 491
[5] Cahn R W 1986 Nature 323 668
[6] Cahn R W 1992 Nature 356 108
[7] Cahn R W 1989 Nature 342 619
[8] Han L B, An Q, Fu R S, Zheng L Q and Lou S N 2010 Physica B: Conden. Matter 405 748
[9] Alsayed A M, Islam M F, Zhang J, Collings P J and Yodh A G 2005 Science 309 1207
[10] Song H, Fensin S J, Asta M and Hoyt J J 2010 Scripta Mater. 63 128
[11] Liu R P, Herlach D M, Vandyoussefi M and Greer A L 2004 Metall. Mater. Trans. A 35 1067
[12] Tang F L, Cheng X G, Lu W J and Yu W Y 2010 Physica B: Conden. Matter 405 1248
[13] Lu K and Li Y 1998 Phys. Rev. Lett. 80 4474
[14] Jin Z H, Gumbsch P, Lu K and Ma E 2001 Phys. Rev. Lett. 87 055703
[15] Finney J L 1970 Proc. R. Soc. London A 319 484
[16] Tsumuraya K and Ishibashi K 1993 Phys. Rev. B 47 8552
[17] Jedlovszky P 1999 J. Chem. Phys. 111 5975
[18] Xiao S F and Hu W Y 2006 J. Chem. Phys. 125 014503
[19] Pan S P, Qin J Y and Gu T K 2010 J. Non-Cryst. Solid 356 1374
[20] Feng Y, Goree J and Liu B 2010 Phys. Rev. Lett. 104 165003
[21] Cheng Y Q and Ma E 2010 Prog. Mater. Sci. 56 379
[22] An X Z 2007 Chin. Phys. Lett. 24 2327
[23] Li M Z, Wang C Z, Hao S G, Kramer M J and Ho K M 2009 Phys. Rev. B 80 184201
[24] Rifkin J 2005 XMD-Molecular Dynamics Program ver 2.5.34-1
[25] Verlet L 1967 Phys. Rev. B 159 98
[26] Stillinger F H and Weber T A 1985 Phys. Rev. B 31 5262
[27] Tersoff J 1986 Phys. Rev. Lett. 56 632
Tersoff J 1988 Phys. Rev. B 38 9902
Tersoff J 1989 Phys. Rev. B 39 5566
[28] Bazant M Z, Kaxiras E and Justo J F 1997 Phys. Rev. B 56 8542
[29] Baskes M I 1987 Phys. Rev. Lett. 59 2666
Lee B 2007 Calphad 31 95
Maria T and Thijsse B J 2010 Comput. Mater. Sci. 48 609
[30] Kumagai T, Izumi S, Hara S and Sakai S 2007 Comput. Mater Sci. 39 457
[31] Jing Y H, Meng Q Y and Zhao W 2009 Physica E 41 685
[32] Cook S J and Clancy P 1993 Phys. Rev. B 47 7686
[33] Schelling P K 2008 Comput. Mater. Sci. 44 274
[34] Zhang S L, Zhang X Y, Qi L, Wang L M, Zhang S H, Zhu Y and Liu R P 2011 Physica B: Conden. Matter (in press)
[35] Fang K C and Weng C I 2005 Nanotechnology 16 250
[36] Tang Y W, Wang J and Zeng X C 2006 J. Chem. Phys. 124 236103
[37] Horsfield A P Clancy P 1994 Modelling Simul. Mater. Sci. Eng. 2 277
[38] Buta D, Asta M and Hoyt J J 2008 Phys. Rev. E 78 031605
[39] Yoo S and Zeng X C 2004 J. Chem. Phys. 120 1654
[40] Liu C S, Zhu Z G, Xia J C and Sun D Y 1999 Phys. Rev. B 60 3194
[41] Ishimaru M, Yoshida K and Motooka T 1996 Phys. Rev. B 54 4638
[42] Waseda Y, Shinoda K, Sugiyama K, Takeda S, Terashima K and Toguri J Ml 1995 Jpn. J. Appl. Phys. 34 4124
[43] Broughton J Q and Li X P 1987 Phys. Rev. B 35 9120