The influence of Multi-Step Sequential Decay on Isoscaling and Fragment Isospin Distribution in GEMINI Simulation
ZHOU Pei1,2, TIAN Wen-Dong1**, MA Yu-Gang1**, CAI Xiang-Zhou1, FANG De-Qing1, WANG Hong-Wei1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
The influence of Multi-Step Sequential Decay on Isoscaling and Fragment Isospin Distribution in GEMINI Simulation
ZHOU Pei1,2, TIAN Wen-Dong1**, MA Yu-Gang1**, CAI Xiang-Zhou1, FANG De-Qing1, WANG Hong-Wei1
1Shanghai Institute of Applied Physics, Chinese Academy of Sciences, PO Box 800-204, Shanghai 201800 2Graduate School of the Chinese Academy of Sciences, Beijing 100049
摘要Extensive calculations on isoscaling behavior with the sequential-decay model GEMINI are performed for the mediate-heavy nuclei in the mass range A=110 and at excitation energies of up to 3 MeV per nucleon. Isoscaling can still be observed after entire−step decays are considered for the light products as in the only first-step decay process case. Comparison between the products after the first-step decay and the ones after entire-step decay demonstrates that multi-step secondary sequential decay strongly influences the isoscaling parameters α, β as well as the fragment isospin distribution. After entire−step decays, the isoscaling parameters α and β are decreased and the fragment isospin distribution can better reproduce the isospin distribution shape as the experimental data.
Abstract:Extensive calculations on isoscaling behavior with the sequential-decay model GEMINI are performed for the mediate-heavy nuclei in the mass range A=110 and at excitation energies of up to 3 MeV per nucleon. Isoscaling can still be observed after entire−step decays are considered for the light products as in the only first-step decay process case. Comparison between the products after the first-step decay and the ones after entire-step decay demonstrates that multi-step secondary sequential decay strongly influences the isoscaling parameters α, β as well as the fragment isospin distribution. After entire−step decays, the isoscaling parameters α and β are decreased and the fragment isospin distribution can better reproduce the isospin distribution shape as the experimental data.
ZHOU Pei;TIAN Wen-Dong**;MA Yu-Gang**;CAI Xiang-Zhou;FANG De-Qing;WANG Hong-Wei
. The influence of Multi-Step Sequential Decay on Isoscaling and Fragment Isospin Distribution in GEMINI Simulation[J]. 中国物理快报, 2011, 28(6): 62101-062101.
ZHOU Pei, TIAN Wen-Dong**, MA Yu-Gang**, CAI Xiang-Zhou, FANG De-Qing, WANG Hong-Wei
. The influence of Multi-Step Sequential Decay on Isoscaling and Fragment Isospin Distribution in GEMINI Simulation. Chin. Phys. Lett., 2011, 28(6): 62101-062101.
[1] Lattimer J M et al 1991 Phys. Rev. Lett. 66 2701
[2] Lattimer J M and Prakash M 2000 Phys. Rep. 333 121
[3] Baran V, Colonna M, Greco V and Di Toro M 2005 Phys. Rep. 410 335
[4] Steiner A W, Prakash M, Lattimer J M and Ellis P J 2005 Phys. Rep. 411 325
[5] Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113
[6] Tsang M B et al 2000 Phys. Rev. Lett. 86 5023
[7] Botvina A S, Lozhkin O V and Trautmann W 2002 Phys. Rev. C 65 044610
[8] Shetty D V et al 2003 Phys. Rev. C 68 021602(R)
[9] Souliotis G A et al 2003 Phys. Rev. C 68 024605
[10] Ono A et al 2003 Phys. Rev. C 68 051601
[11] Friedman W A 2004 Phys. Rev. C 69 031601(R)
[12] Veselsky M, Souliotis G A andYennello S J 2004 Phys. Rev. C 69 031602(R)
[13] Ma Y G et al 2004 Phys. Rev. C 69 064610
[14] Shetty D V et al 2004 Phys. Rev. C 70 011601(R)
[15] Geraci E et al 2004 Nucl. Phys. A 732 173
[16] Tian W D et al 2005 Chin. Phys. Lett. 22 306
[17] Raduta Ad R 2005 Eur. Phys. J. A 24 85
[18] Ma Y G et al 2005 Phys. Rev. C 72 064603
[19] Souliotis G A et al 2006 Phys. Rev. C 73 024606
[20] Dorso C O et al 2006 Phys. Rev. C 73 044601
[21] Tian W D, Ma Y G, Cai X Z et al 2007 Phys. Rev. C 76 024607
Tian W D, Ma Y G, Cai X Z et al 2007 Chin. Phys. Lett. 24 385
[22] Fang D Q, Ma Y G, Zhong C et al 2007 J. Phys. G 34 2173
[23] Su Q M, Ma Y G, Tian W D et al 2008 Chin. Phys. Lett. 25 2000
[24] Galanopoulos S et al 2010 Nucl. Phys. A 837 145
[25] Veselsky M et al 2010 Nucl. Phys. A 837 163
[26] Tsang M B et al 2006 Eur. Phys. J. A 30 129
[27] Shetty D V et al 2005 Phys. Rev. C 71 024602
[28] Le Fèvre A et al 2005 Phys. Rev. Lett. 94 162701
[29] Colonna A and Tsang M B 2006 Eur. Phys. J. A 30 165
[30] Fu Y, Fang D Q, Ma Y G et al 2010 Nucl. Phys. A 834 584c
Fu Y, Fang D Q, Ma Y G et al 2009 Chin. Phys. Lett. 26 082503
[31] Charity R J et al 1988 Nucl. Phys. A 483 371 (computer code GEMINI, see http://www. chemistry.wustl.edu/~rc/)
[32] Rentsch D et al 1993 Phys. Rev. C 48 2789
[33] Lleres A et al 1993 Phys. Rev. C 48 2753
[34] Hagel K et al 1994 Phys. Rev. C 50 2017
[35] Lleres A et al 1994 Phys. Rev. C 50 1973
[36] Ma Y G et al 2002 Phys. Rev. C 65 051602(R)
[37] Piantelli S et al 2006 Phys. Rev. C 74 034609
[38] Mocko M et al 2008 Phys. Rev. C 78 024612
[39] Amorini A et al 2009 Phys. Rev. Lett. 102 112701
[40] Gawlikowicz W et al 2010 Phys. Rev. C 81 014604
[41] Charity R J 2010 Phys. Rev. C 82 014610
[42] Charity R J 1998 Phys. Rev. C 58 1073