A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices
HUANG Bei-Bing1**, WAN Shao-Long2
1Department of Experiment Teaching, Yancheng Institute of Technology, Yancheng 224051 2Institute for Theoretical Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices
HUANG Bei-Bing1**, WAN Shao-Long2
1Department of Experiment Teaching, Yancheng Institute of Technology, Yancheng 224051 2Institute for Theoretical Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
摘要A finite temperature phase diagram of the rotating Bose–Hubbard model, including the crossover between Mott insulator and the normal state, is derived on the frame of the Gutzwiller mean-field theory. In addition, we calculate the critical temperature of superfluid-normal phase transition.
Abstract:A finite temperature phase diagram of the rotating Bose–Hubbard model, including the crossover between Mott insulator and the normal state, is derived on the frame of the Gutzwiller mean-field theory. In addition, we calculate the critical temperature of superfluid-normal phase transition.
[1] Fisher M P A et al 1989 Phys. Rev. B 40 546
[2] Jaksch D et al 1998 Phys. Rev. Lett. 81 3108
[3] Greiner M et al 2002 Nature 415 39
[4] Luthra M S et al 2008 Phys. Rev. B 78 165104
[5] Argüelles A and Santos L 2007 Phys. Rev. A 75 053613
[6] Polak T P and Kopeć T K 2007 Phys. Rev. B 76 094503
[7] McKay D et al 2008 Nature 453 76
[8] Trotzky S, Cheinet P et al 2008 Science 319 295
[9] Kasamatsu K and Tsublta M 2006 Phys. Rev. Lett. 97 240404
[10] Bhat R, Holland M J and Carr L D 2006 Phys. Rev. Lett. 96 060405
[11] Pu H, Baksmaty L O, Yi S and Bigelow N P 2005 Phys. Rev. Lett. 94 190401
[12] Reijnders J W and Duine R A 2004 Phys. Rev. Lett. 93 060401
[13] Martin J I, Velez M, Nogues J and Schuller I K 1997 Phys. Rev. Lett. 79 1929
[14] Morgan D J and Ketterson J B 1998 Phys. Rev. Lett. 80 3614
[15] Zhuravlev V and Maniv T 2003 Phys. Rev. B 68 174507
[16] Pogosov W V, Rakhmanov A L and Moshchalkov V V 2003 Phys. Rev. B 67 014532
[17] Niemeyer M, Freericks J K and Monien H 1999 Phys. Rev. B 60 2357
[18] Oktel M Ö, Nitǎ M and Tanatar B 2007 Phys. Rev. B 75 045133
[19] Umucalilar R O and Oktel M Ö 2007 Phys. Rev. A 76 055601
[20] Hofstadter D R 1976 Phys. Rev. B 14 2239
[21] Jaksch D and Zoller P 2003 New J. Phys. 5 56
[22] Sheshadri K, Krishnamurthy H R, Pandit R and Ramakrishnan T V 1993 Europhys. Lett. 22 257
[23] Oosten D V, Straten P V D and Stoof H T C 2001 Phys. Rev. A 63 053601
[24] Durić T and Lee D K K 2010 Phys. Rev. B 81 014520
[25] Zhang J, Jian C, Ye F and Zhai H 2010 Phys. Rev. Lett. 105 155302
[26] Powell S, Barnett R, Sensarma R and Sarma S D 2010 Phys. Rev. Lett. 104 255303
[27] Buonsante P and Vezzani A 2004 Phys. Rev. A 70 033608
[28] Goldbaum D S and Mueller E J 2008 Phys. Rev. A 77 033629