摘要ZnO and ZnO/Ag films are grown on Si (111) substrates by rf magnetron sputtering at room temperature. After annealing, it is found that the ultraviolet (UV) emission of ZnO/Ag films strongly depends on the thickness of the initial internal Ag layer. During the annealing process, Ag nanoparticles are formed and diffused into the ZnO film. The resonant coupling between localized surface plasmons (LSPs) of Ag nanoparticles and ZnO enhances the UV emission. The largest UV enhancement over 12 times is found when the initial internal Ag layer is 10 nm. It is also observed that the diffusion of Ag nanoparticles destroys the ZnO crystal quality in different grades, depending on the sizes of the Ag nanoparticles. The poor crystal quality induces bad UV emission. It is concluded that the UV emission is the result of the competition between the LSP enhancement and the thermal diffusion destroying effect from Ag nanoparticles.
Abstract:ZnO and ZnO/Ag films are grown on Si (111) substrates by rf magnetron sputtering at room temperature. After annealing, it is found that the ultraviolet (UV) emission of ZnO/Ag films strongly depends on the thickness of the initial internal Ag layer. During the annealing process, Ag nanoparticles are formed and diffused into the ZnO film. The resonant coupling between localized surface plasmons (LSPs) of Ag nanoparticles and ZnO enhances the UV emission. The largest UV enhancement over 12 times is found when the initial internal Ag layer is 10 nm. It is also observed that the diffusion of Ag nanoparticles destroys the ZnO crystal quality in different grades, depending on the sizes of the Ag nanoparticles. The poor crystal quality induces bad UV emission. It is concluded that the UV emission is the result of the competition between the LSP enhancement and the thermal diffusion destroying effect from Ag nanoparticles.
[1] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J and Morkoç H 2005 J. Appl. Phys. 98 041301
[2] Hwang D K, Oh M S, Lim J H and Park S J 2007 J. Phys. D: Appl. Phys. 40 R387
[3] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T and Scherer A 2004 Nature Mater. 3 601
[4] Kwon M K, Kim J Y, Kim B H, Park I K, Cho C Y, Byeon C C and Park S J 2008 Adv. Mater. 20 1253
[5] Yeh D M, Huang C F, Chen C Y, Lu Y C and Yang C C 2008 Nanotechnology 19 345201
[6] You J B, Zhang X W, Fan Y M, Qu S and Chen N F 2007 Appl. Phys. Lett. 91 231907
[7] You J B, Zhang X W, Fan Y M, Yin Z G, Cai P F and Chen N F 2008 J. Phys. D: Appl. Phys. 41 205101
[8] Lawrie B J, Haglund Jr R F and Mu R 2009 Opt. Express 17 2565
[9] Lai C W, An J and Ong H C 2005 Appl. Phys. Lett. 86 251105
[10] Lin J M, Lin H Y, Cheng C L and Chen Y F 2006 Nanotechnology 17 4391
[11] Lei D Y and Ong H C 2007 Appl. Phys. Lett. 91 211107
[12] Liu K W, Tang Y D, Cong C X, Sum T C, Huan A C H, Shen Z X, Wang L, Jiang F Y, Sun X W and Sun H D 2009 Appl. Phys. Lett. 94 151102
[13] Cheng P H, Li D S, Yuan Z Z, Chen P L and Yang D R 2008 Appl. Phys. Lett. 92 041119
[14] Cheng P H, Li D S, Li X Q, Liu T and Yang D R 2009 J. Appl. Phys. 106 063120
[15] Xiao X H, Ren F, Zhou X D, Peng TC, Wu W, Peng X N, Yu X F and Jiang C Z 2010 Appl. Phys. Lett. 97 071909
[16] Öztas M and Bedir M 2008 Thin Solid Films. 516 1703
[17] Lu H F, Xu X L, Lu L, Gong M G and Liu Y S 2008 J. Phys.: Condens. Matter 20 472202
[18] Liu K P, Yang B F, Yan H W, Fu Z P, Wen M W, Chen Y J and Zuo J 2009 J. Lumin. 129 969
[19] Chou K S, Huang K C and Lee H H 2005 Nanotechnology. 16 779
[20] Bacaksiz E, Görür O, Tomakin M, Yanmaz E and Altunbas M 2007 Mater. Lett. 61 5239
[21] Zhao Y L, Gao F, Wang Z B, Ming H and Xu X L 2007 Acta Phys. Sin. 56 3564 (in Chinese)
[22] Ni W H, An J, Lai C W, Ong H C and Xu J B 2006 J. Appl. Phys. 100 026103
[23] Li C, G Fang J, Ren Y Y, Fu Q and Zhao X Z 2006 J. Nanosci. Nanotechnol. 6 1467
[24] Duan L, Lin B X, Zhang W Y, Zhong S and Fu Z X 2006 Appl. Phys. Lett. 88 232110
[25] Zhang Y, Zhang Z Y, Lin B X, Fu Z X and Xu J 2005 J. Phys. Chem. B 109 19200
[26] Xu X L and Shi C S 2000 Prog. Phys. 20 356 (in Chinese)