摘要We demonstrate that an interlinked gold half-shell array fabricated by metal deposition on a sacrificial two-dimensional colloidal crystal template can show a large enhancement in surface-enhanced Raman spectroscopy at its main transmission resonance. It is further observed that Raman signal enhancement shows a noticeable difference when reversing the orientations of the Au nanobowls in relation to the underlying flat dielectric substrate. As the pump laser wavelength is tuned in the vicinity of the resonant plasmonic mode of the structure, the enhancement on an upward Au nanobowl array can be five-fold compared to that on a downward one. Numerical simulation confirms that for the upward nanobowls, a strong localized mode inside the Au nanobowls is formed at the resonant excitation wavelength, which helps to explain this observed extra enhancement in Raman scattering.
Abstract:We demonstrate that an interlinked gold half-shell array fabricated by metal deposition on a sacrificial two-dimensional colloidal crystal template can show a large enhancement in surface-enhanced Raman spectroscopy at its main transmission resonance. It is further observed that Raman signal enhancement shows a noticeable difference when reversing the orientations of the Au nanobowls in relation to the underlying flat dielectric substrate. As the pump laser wavelength is tuned in the vicinity of the resonant plasmonic mode of the structure, the enhancement on an upward Au nanobowl array can be five-fold compared to that on a downward one. Numerical simulation confirms that for the upward nanobowls, a strong localized mode inside the Au nanobowls is formed at the resonant excitation wavelength, which helps to explain this observed extra enhancement in Raman scattering.
[1] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[2] Nie S M and Emory S R 1997 Science 275 1102
[3] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[4] Xu H X, Bjerneld E J, Kall M and Borjesson L 1999 Phys. Rev. Lett. 83 4357
[5] Chen Z, Zhan P, Dong W, Li Y Y, Tang C J, Min N B and Wang Z L 2010 Chin. Sci. Bull. 55 2600
[6] Wang Z L 2009 Prog. Phys. 29 287 (in Chinese)
[7] Lin C H, Jiang L, Zhou J, Xiao H, Chen S J and Tsai H L 1997 Chin. Phys. Lett. 14 705
[8] Liu F X, Cao Z S, Tang C J, Chen L and Wang Z L 2010 ACS Nano 4 2643
[9] Michaels A M, Jiang J and Brus L 2000 J. Phys. Chem. B 104 11965
[10] Kneipp K, Wang Y, Kneipp H, Itzkan I, Dasari R R and Feld M S 1996 Phys. Rev. Lett. 76 2444
[11] Banaee M G and Crozier K B 2010 Opt. Lett. 35 760
[12] Huebner U, Boucher R, Schneidewind H, Cialla D and Popp J 2008 Microelectron. Engin. 85 1792
[13] Mäder M, Höche T, Gerlach J W, Perlt S, Dorfmüller J, Saliba M, Vogelgesang R, Kern K and Rauschenbach B 2010 Nano Lett. 10 47
[14] Lu Y, Liu G L, Kim J, Mejia Y X and Lee L P 2005 Nano Lett. 5 119
[15] Ye J, Dorpe P V, Roy W V, Borghs G and Maes G 2009 Langmuir 25 1822
[16] Ye J, Dorpe P V, Roy W V, Maes G and Borghs G 2009 J. Phys. Chem. C 113 3110
[17] Xu M J, Lu N, Xu H B, Qi D P, Wang Y D and Chi L F 2009 Langmuir 25 11216
[18] Zhan P, Wang Z L, Dong H, Sun J, Wu J, Wang H T, Zhu S N, Ming N B and Zi J 2006 Adv. Mater. 18 1612
[19] Landström L, Brodoceanu D, Piglmayer K, Langer G and Bäuerle D 2005 Appl. Phys. A 81 15
[20] Li Y Y, Pan J, Zhan P, Zhu S N, Ming N B, Wang Z L, Han W D, Jiang X Y and Zi J 2010 Opt. Exp. 18 3546
[21] Taflove A and Hagness S C 2000 Computational Electrodynamics: the Finite Difference Time Domain Method 2nd edn (Boston: Artech House)
[22] Ordal M A, Long L L, Bell R J, Bell S E, Alexander J R W and Ward C A 1983 Appl. Opt. 22 1099
[23] Liu Y J, Zhang Z Y, Zhao Q, Dluhy R A and Zhao Y P 2009 J. Phys. Chem. C 113 9664
[24] Zhang Z Y, Liu Y J, Zhao Q and Zhao Y P 2009 Appl. Phys. Lett. 94 143107
[25] Teperik T V and Borisov A G 2009 Phys. Rev. B 79 245409