Photocatalysis of InGaN Nanodots Responsive to Visible Light
WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi
Tsinghua National Laboratory for Information Science and Technology/State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084
Photocatalysis of InGaN Nanodots Responsive to Visible Light
WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi
Tsinghua National Laboratory for Information Science and Technology/State Key Laboratory on Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084
摘要Photocatalysis of InGaN nanodots grown on GaN/sapphire templates by metal organic vapor phase epitaxy is studied. Photodegradation of methylene orange by InGaN nanodots responsive to visible light is observed. Analysis through atomic force microscopy and time-resolved photoluminescence measurements show that wider bandgap of InGaN, larger specific surface area and more proportion of photocarriers diffusing to the surface before recombination are propitious to photodegradation.
Abstract:Photocatalysis of InGaN nanodots grown on GaN/sapphire templates by metal organic vapor phase epitaxy is studied. Photodegradation of methylene orange by InGaN nanodots responsive to visible light is observed. Analysis through atomic force microscopy and time-resolved photoluminescence measurements show that wider bandgap of InGaN, larger specific surface area and more proportion of photocarriers diffusing to the surface before recombination are propitious to photodegradation.
WANG Lai**;ZHAO Wei;HAO Zhi-Biao;LUO Yi
. Photocatalysis of InGaN Nanodots Responsive to Visible Light[J]. 中国物理快报, 2011, 28(5): 57301-057301.
WANG Lai**, ZHAO Wei, HAO Zhi-Biao, LUO Yi
. Photocatalysis of InGaN Nanodots Responsive to Visible Light. Chin. Phys. Lett., 2011, 28(5): 57301-057301.
[1] Ohtani B 2008 Chem. Lett. 37 216
[2] Maness P C, Smolinski S, Blake D M, Huang Z, Wolfrum E J and Jacoby W A 1999 Appl. Environ. Microbiol. 65 4094
[3] Hoffmann M R, Martin S T, Choi W Y and Bahnemann D W 1995 Chem. Rev. 95 69
[4] Asahi R, Morikawa T, Ohwaki T, Aoki K and Taga Y 2001 Science 293 269
[5] Aryal K, Pantha B N, Li J, Lin J Y and Jiang H X 2010 Appl. Phys. Lett. 96 052110
[6] Chichibu S F, Abare A C, Mack M P, Minsky M S, Deguchi T, Cohen D, Kozodoy P, Fleischer S B, Keller S, Speck J S, Bowers J E, Hu E, Mishra U K, Coldren L A, DenBaars S P, Wada K, Sota T and Nakamura S 1999 Mater. Sci. Eng. B 59 298
[7] Nakamura S, Senoh N, Iwasa N and Nagahama S 1995 Jpn. J. Appl. Phys. 34 L797
[8] Fujii K, Karasawa T and Ohkawa K 2005 Jpn. J. Appl. Phys. 44 L543
[9] Fujii K and Ohkawa K 2005 Jpn. J. Appl. Phys. 44 L909
[10] Fujii K, Kusakabe K and Ohkawa K 2005 Jpn. J. Appl. Phys. 44 7433
[11] Fujii K and Ohkawa K 2006 J. Electrochem. Soc. 153 A468
[12] Fujii K and Ohkawa K 2006 Phys. Status Solidi C 3 2270
[13] Waki I, Cohen D, Lal R, Mishra U, DenBaars S P and Nakamura S 2007 Appl. Phys. Lett. 91 093519
[14] Ono M, Fujii K, Ito T, Iwaki Y, Hirako A, Yao T and Ohkawa K 2007 J. Chem. Phys. 126 054708
[15] Fujii K, Nakayama H, Sato K, Kato T, Cho M W and Yao T 2008 Phys. Status Solidi C 5 2333
[16] Iwaki Y, Ono M, Yamaguchi K, Kusakabe K, Fujii K and Ohkawa K 2008 Phys. Status Solidi C 5 2349
[17] Ni M, Leung M K H, Leung D Y C and Sumathy K 2007 Renewable and Sustainable Energy Reviews 11 401
[18] Fujii K, Kato T, Sato K, Im I H, Chang J H and Yao T 2008 Mater. Res. Soc. Symp. Proc. 1127 T04-01
[19] Wu X H, Brown L M, Kapolnek D, Keller S, Keller B, DenBaars S P and Speck J S 1996 J. Appl. Phys. 80 3228
[20] Ji L W, Su Y K, Chang S J, Wu L W, Fang T H, Chen J F, Tsai T Y, Xue Q K and Chen S C 2003 J. Cryst. Growth 249 144
[21] Schubert E F 2003 Light-Emitting Diodes (Cambridge: Cambridge University) p 33
[22] Garrett G A, Shen H, Wraback M, Tyagi A, Schmidt M C, Speck J S, DenBaars S P and Nakamaura S 2009 Phys. Status Solidi C 6 S800
[23] Schubert E F 2003 Light-Emitting Diodes (Cambridge: Cambridge University) p 40