Frequency-Dependent Electrical Transport Properties of 4,4',4
LI Bi-Xin1,2, CHEN Jiang-Shan1, ZHAO Yong-Biao1, MA Dong-Ge1**
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 2Graduate University of Chinese Academy of Sciences, Beijing 100049
Frequency-Dependent Electrical Transport Properties of 4,4',4
LI Bi-Xin1,2, CHEN Jiang-Shan1, ZHAO Yong-Biao1, MA Dong-Ge1**
1State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 2Graduate University of Chinese Academy of Sciences, Beijing 100049
摘要Frequency-dependent electrical transport properties of 4,4',4"−tri(N−carbazolyl)-triphenylamine (TCTA) are analyzed by impedance spectroscopy (IS) as functions of bias and temperature. The Cole-Cole plot shows a single semicircle which indicates that the equivalent circuit can be designed as a single parallel resistor Rp and capacitor Cp network with a series resistance Rs. The bulk capacitance Cp remains unchanged while the resistance Rp decreases along with bias voltage. Conduction mechanism matches well with the space-charge-limited current (SCLC) model with exponential trap charge distributions. The temperature-dependent impedance studies reveal the activation energy of 0.246 eV with no phase change in the temperature range 220–320 K. These results indicate that the IS method is applicable for organic semiconductors having a wide band gap.
Abstract:Frequency-dependent electrical transport properties of 4,4',4"−tri(N−carbazolyl)-triphenylamine (TCTA) are analyzed by impedance spectroscopy (IS) as functions of bias and temperature. The Cole-Cole plot shows a single semicircle which indicates that the equivalent circuit can be designed as a single parallel resistor Rp and capacitor Cp network with a series resistance Rs. The bulk capacitance Cp remains unchanged while the resistance Rp decreases along with bias voltage. Conduction mechanism matches well with the space-charge-limited current (SCLC) model with exponential trap charge distributions. The temperature-dependent impedance studies reveal the activation energy of 0.246 eV with no phase change in the temperature range 220–320 K. These results indicate that the IS method is applicable for organic semiconductors having a wide band gap.
[1] Tang C W and Vanslyke S A 1987 Appl. Phys. Lett. 51 913
[2] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L and Holmes A B 1990 Nature 347 539
[3] Tang C W 1986 Appl. Phys. Lett. 48 183
[4] Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[5] Bässler H 1993 Phys. Status Solidi B 175 15
[6] Kuwabara Y, Ogawa H, Inada H, Noma N and Shirota Y 1994 Adv. Mater. 6 677
[7] Kim S H, Jang J, Yook K S, Lee J Y, Gong M S, Ryu S, Chang G K and Chang H J 2008 J. Appl. Phys. 103 054502
[8] Ikai M, Tokito S, Sakamoto Y, Suzuki T and Taga Y 2001 Appl. Phys. Lett. 79 156
[9] Qiao X F, Chen J S and Ma D G 2010 Chin. Phys. Lett. 27 088504
[10] Noh S, Suman C K, Hong Y and Lee C 2009 J. Appl. Phys. 105 033709
[11] Campbell I H, Smith D L and Ferraris J P 1995 Appl. Phys. Lett. 66 3030
[12] Meier M, Karg S and Riess W 1997 J. Appl. Phys. 82 1961
[13] Reddy V S, Das S, Ray S K and Dhar A 2007 J. Phys. D: Appl. Phys. 40 7687
[14] Chauhan G, Srivastava R, Tyagi P, Kumar A, Srivastava P C and Kamalasanan M N 2010 Synth. Met. 160 1422
[15] Kim S H, Choi K H, Lee H M, Hwang D H, Do L M, Chu H Y and Zyung T 2000 J. Appl. Phys. 87 882
[16] Li Y F, Gao J, Yu G, Cao Y and Heeger A J 1998 Chem. Phys. Lett. 287 83
[17] Xu Y, Tao Y, Zhang H, Chen X, Cao G, Xu Z, Li H, Bao S and He P 2005 Physica B 362 35
[18] Hoping M, Schildknecht C, Gargouri H, Riedl T, Tilgner M, Johannes H H and Kowalsky W 2008 Appl. Phys. Lett. 92 213306
[19] Suman C K, Yun J, Kim S, Lee S D and Lee C 2009 Curr. Appl. Phys. 9 978
[20] Suman C K, Yang J and Lee C 2010 Mater. Sci. Eng. B 166 147
[21] Chen C C, Huang B C, Lin M S, Lu Y J, Cho T Y, Chang C H, Tien K C, Liu S H, Ke T H and Wu C C 2010 Org. Electron. 11 1901
[22] Dridi C, Benzarti-Ghedira M, Vocanson F, Ben Chaabane R, Davenas J and Ben Ouada H 2009 Semicond. Sci. Technol. 24 105007
[23] Macdonald J R 1987 Impedance Spectroscopy (New York: Wiley)
[24] Marai F, Romdhane S, Hassine L, Majdoub M and Bouchriha H 2003 Synth. Met. 132 117
[25] Lampert M A and Mark P 1970 Current Injection in Solids (New York: Academic)
[26] Campbell A J, Bradley D D C and Lidzey D G 1997 J. Appl. Phys. 82 6326
[27] Jonscher A K 1977 Nature 267 673
[28] Kumar V, Jain S C, Kapoor A K, Poortmans J and Mertens R 2003 J. Appl. Phys. 94 1283
[29] Singh R K, Kumar A and Singh R 2010 J. Appl. Phys. 107 113711