摘要We design an effective light trapping scheme through engineering metallic gratings and one-dimensional dielectric photonic crystals (PhCs) to increase the optical path length of light within the solar cells. This incorporation can result in broadband optical absorption enhancement not only for transverse magnetic polarized light but also for transverse-electric polarization. Even when no plasmonic mode can be excited, due to the high reflection of the PhCs, the absorption in the active region can still be enhanced. Rigorous coupled wave analysis results demonstrate that such a hybrid structure boosts the overall cell performance by increasing the light trapping capabilities and is especially effective at the silicon band edge. This kind of design can be used to increase the optical absorption over a wide spectral range and is relatively independent of the angle of incidence.
Abstract:We design an effective light trapping scheme through engineering metallic gratings and one-dimensional dielectric photonic crystals (PhCs) to increase the optical path length of light within the solar cells. This incorporation can result in broadband optical absorption enhancement not only for transverse magnetic polarized light but also for transverse-electric polarization. Even when no plasmonic mode can be excited, due to the high reflection of the PhCs, the absorption in the active region can still be enhanced. Rigorous coupled wave analysis results demonstrate that such a hybrid structure boosts the overall cell performance by increasing the light trapping capabilities and is especially effective at the silicon band edge. This kind of design can be used to increase the optical absorption over a wide spectral range and is relatively independent of the angle of incidence.
ZHENG Gai-Ge;XIAN Feng-Lin;LI Xiang-Yin**
. Enhancement of Light Absorption in Thin Film Silicon Solar Cells with Metallic Grating and One-Dimensional Photonic Crystals[J]. 中国物理快报, 2011, 28(5): 54213-054213.
ZHENG Gai-Ge, XIAN Feng-Lin, LI Xiang-Yin**
. Enhancement of Light Absorption in Thin Film Silicon Solar Cells with Metallic Grating and One-Dimensional Photonic Crystals. Chin. Phys. Lett., 2011, 28(5): 54213-054213.
[1] Campa A et al 2008 Thin Solid Films 516 6963
[2] James G M et al 2008 Opt. Express 16 15238
[3] Catchpole K R, McCann M J, Weber K J and Blakers A W 2001 Sol. Energy Mater. Sol. Cells 68 173
[4] Atwater H A and Polman A 2010 Nature Mater. 9 205
[5] Catchpole K R and Polman A 2009 Opt. Express 16 21793
[6] Pillai S et al 2007 J. Appl. Phys. 101 093105
[7] Catchpole K R and Polman A 2008 Appl. Phys. Lett. 93 191113
[8] Pala R A et al 2009 Adv. Mater. 21 3504
[9] Zeng L et al 2008 Appl. Phys. Lett. 93 221105
[10] Krc J, Zeman M, Luxembourg S L and Topic M 2009 Appl. Phys. Lett. 94 153501
[11] Fink Y et al 1998 Science 282 1679
[12] Mutitu J G et al 2008 Opt. Express 16 15238
[13] Bai W L, Gan Q Q, Bartoli F, Zhang J, Cai L K, Huang Y D and Song G F 2009 Opt. Lett. 34 3725
[14] Haug F J et al 2008 J. Appl. Phys. 104 064509
[15] Tvingstedt K et al 2007 Appl. Phys. Lett. 91 113514
[16] Zeng L et al 2006 Appl. Phys. Lett. 89 111111
[17] Bai W L et al 2009 Acta Phys. Sin. 58 8021 (in Chinese)
[18] Ying H, Cao Z Q and Shen Q S 2004 Chin. Phys. Lett. 21 2089
[19] Hooper I R and Sambles J R 2004 Phys. Rev. B 70 045421
[20] Moharam M G et al 1995 J. Opt. Soc. Am. A 12 1077
[21] Peters M, Rüdiger M, Hermle M and Blasi B 2010 Proc. SPIE 7725 772514
[22] Mallick S B et al 2010 Proc. SPIE 7725 772503
[23] Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic)
[24] Zhou D Y and Biswas R 2008 J. Appl. Phys. 103 093102
[25] Min C J et al 2010 Appl. Phys. Lett. 96 133302
[26] Zhou D Y and Biswas R 2008 J. Appl. Phys. 103 093102
[27] Ma X, Liu Z M et al 2011 Chin. Phys. Lett. 28 028801