Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition
WEI Meng1**, WANG Xiao-Liang1,2, XIAO Hong-Ling1,2, WANG Cui-Mei1,2, PAN Xu1, HOU Qi-Feng1, WANG Zhan-Guo2
1Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition
WEI Meng1**, WANG Xiao-Liang1,2, XIAO Hong-Ling1,2, WANG Cui-Mei1,2, PAN Xu1, HOU Qi-Feng1, WANG Zhan-Guo2
1Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
摘要A 2 µm high quality crack-free GaN film was successfully grown on 2-inch Si(111) substrates by metal organic chemical vapor deposition with a high temperature AlN/graded-AlGaN multibuffer and an AlN/GaN superlattice interlayer. It is found that the structures, as well as the thicknesses of the multibuffer and interlayer, are crucial for the growth of a crack-free GaN epilayer. The GaN(0002) XRD FWHM of the crack-free sample is 479.8 arcsec, indicating good crystal quality. An AlGaN/GaN heterostructure was grown and tested by Van der Pauw Hall measurement. The electron mobility of two-dimensional electron gas increases from 1928 cm2/V⋅s to 12277 cm2/V⋅s when the test-temperature decreases from room temperature to liquid nitrogen temperature. The electron mobility is comparable to that of AlGaN/GaN heterostructures grown on sapphire, and the largest value is obtained for an AlGaN/GaN/Si(111) heterostructure grown by metal organic chemical vapor deposition.
Abstract:A 2 µm high quality crack-free GaN film was successfully grown on 2-inch Si(111) substrates by metal organic chemical vapor deposition with a high temperature AlN/graded-AlGaN multibuffer and an AlN/GaN superlattice interlayer. It is found that the structures, as well as the thicknesses of the multibuffer and interlayer, are crucial for the growth of a crack-free GaN epilayer. The GaN(0002) XRD FWHM of the crack-free sample is 479.8 arcsec, indicating good crystal quality. An AlGaN/GaN heterostructure was grown and tested by Van der Pauw Hall measurement. The electron mobility of two-dimensional electron gas increases from 1928 cm2/V⋅s to 12277 cm2/V⋅s when the test-temperature decreases from room temperature to liquid nitrogen temperature. The electron mobility is comparable to that of AlGaN/GaN heterostructures grown on sapphire, and the largest value is obtained for an AlGaN/GaN/Si(111) heterostructure grown by metal organic chemical vapor deposition.
WEI Meng**;WANG Xiao-Liang;XIAO Hong-Ling;WANG Cui-Mei;PAN Xu;HOU Qi-Feng;WANG Zhan-Guo
. Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition[J]. 中国物理快报, 2011, 28(4): 48102-048102.
WEI Meng**, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo
. Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition. Chin. Phys. Lett., 2011, 28(4): 48102-048102.
[1] Nikishin S A et al 1999 Appl. Phys. Lett. 75 2073
[2] Strite S et al 1992 J. Vac. Sci. Technol. B 10 1237
[3] Dadgar A et al 2002 Appl. Phys. Lett. 80 3670
[4] Wang J F et al 2006 Appl. Phys. Lett. 89 152105
[5] Liu W et al 2007 Appl. Phys. Lett. 90 011914
[6] Feltin E et al 2001 Appl. Phys. Lett. 79 3230
[7] Liu Z et al 2007 Chin. Phys. 16 1467
[8] Marchand H et al 2001 J. Appl. Phys. 89 7846
[9] Able A et al 2005 J. Cryst. Growth 276 415
[10] Cheng K et al 2006 J. Electron. Mater. 35 592
[11] Kim M et al 2001 Appl. Phys. Lett. 79 2713
[12] Arslan E et al 2008 J. Phys. D: Appl. Phys. 41 155317
[13] Cheng K et al 2007 J. Cryst. Growth 298 822
[14] Shu C K et al 1998 Appl. Phys. Lett. 73 641
[15] Zang K Y et al 2003 Phys. Status Solidi C 7 2067
[16] S Raghavan et al 2005 J. Appl. Phys. 98 023514
[17] Sugahara T et al 2004 Jpn. J. Appl. Phys. 43 1595
[18] Bougrioua Z et al 2003 Phys. Status Solidi A 195 93
[19] Wang C M et al 2006 Phys. Status Solidi C 3 486
[20] Miyoshia M, Egawab T and Ishikawa H 2005 J. Vac. Sci. Technol. B 23 1527
[21] Arulkumaran S et al 2003 J. Vac. Sci. Technol. B 21 888
[22] Heying B et al 1999 J. Appl. Phys. 85 6470
[23] Ishikawa H et al 1999 Jpn. J. Appl. Phys. 38 492
[24] Acord J D et al 2004 J. Cryst. Growth 272 65
[25] Wei M et al 2011 J. Mater. Sci: Mater. Electron. (accepted)
[26] Weng X et al 2007 J. Electron. Mater. 36 346
[27] Feltin E et al 2001 Appl. Phys. Lett. 79 3230
[28] Arulkumaran S et al 2005 Appl. Phys. Lett. 86 123503
[29] Zhang M L, Wang X L, Xiao H L and Wang C M 2009 Superlattices Microstructures 45 54