摘要The strain in GaN epitaxial layers grown on 6H-SiC substrates with an AlN buffer by metalorganic chemical vapor deposition is investigated. It is found that the insertion of a graded AlGaN layer between the GaN layer and the AlN buffer can change the signs of strain. A compressive strain in an overgrown thick (2 µm) GaN layer is obtained. High-resolution x-ray diffraction, Raman spectroscopy and photoluminescence measurements are used to determine the strain state in the GaN layers. The mechanism of stress control by inserting graded AlGaN in subsequent GaN layers is discussed briefly.
Abstract:The strain in GaN epitaxial layers grown on 6H-SiC substrates with an AlN buffer by metalorganic chemical vapor deposition is investigated. It is found that the insertion of a graded AlGaN layer between the GaN layer and the AlN buffer can change the signs of strain. A compressive strain in an overgrown thick (2 µm) GaN layer is obtained. High-resolution x-ray diffraction, Raman spectroscopy and photoluminescence measurements are used to determine the strain state in the GaN layers. The mechanism of stress control by inserting graded AlGaN in subsequent GaN layers is discussed briefly.
CHEN Yao**;JIANG Yang;XU Pei-Qiang;MA Zi-Guang;WANG Xiao-Li;WANG Lu;JIA Hai-Qiang;CHEN Hong
. Stress Control in GaN Grown on 6H-SiC by Metalorganic Chemical Vapor Deposition[J]. 中国物理快报, 2011, 28(4): 48101-048101.
CHEN Yao**, JIANG Yang, XU Pei-Qiang, MA Zi-Guang, WANG Xiao-Li, WANG Lu, JIA Hai-Qiang, CHEN Hong
. Stress Control in GaN Grown on 6H-SiC by Metalorganic Chemical Vapor Deposition. Chin. Phys. Lett., 2011, 28(4): 48101-048101.
[1] Gaska R, Yang J W, Osinsky A, Chen Q and Asif Khan M 1998 Appl. Phys. Lett. 72 707
[2] Ambacher Q, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Schaff W J and Eastman L F 1999 J. Appl. Phys. 85 3222
[3] Wu Y F, Saxler A, Moore M, Smith R P, Sheppard S, Chavarkar P M, Wisleder T, Mishra U K and Parikh P 2004 IEEE Electron. Device Lett. 25 117
[4] Miyoshi M, Ishikawa H, Egawa T, Asai K, Mouri M, Shibata T, Tanaka M and Oda O 2004 Appl. Phys. Lett. 85 1710
[5] Zhao D G, Xu S J, Xie M H and Tong S Y 2003 Appl. Phys. Lett. 83 677
[6] Waltereit P, Brandt O, Trampert A, Ramsteiner M, Reiche M, Qi M and Ploog K H 1999 Appl. Phys. Lett. 74 3660
[7] Davydov V Y, Averkiev N S, Goncharuk I N, Nelson D K, Nikitina I P, Polkovnikov A S, Smirnov A N and Jacobson M A 1997 J. Appl. Phys. 82 5097
[8] Edwards N V, Bremser M D and Davis R F 1998 Appl. Phys. Lett. 73 2808
[9] Ponce F A and Krusor B S 1995 Appl. Phys. Lett. 67 410
[10] Perry W G, Zheleva T, Bremser M D and Davis R F 1997 J. Electron. Mater. 26 224
[11] Heying B, Wu X H, Keller S, Li Y, Kapolnek D, Keller B P, DenBaars S P and Speck J S 1996 Appl. Phys. Lett. 68 643
[12] Zheng X H, Wang Y T, Feng Z H, Yang H, Chen H, Zhou J M and Liang J W 2003 J. Cryst. Growth 250 345
[13] Moram M A and Vickers M E 2009 Rep. Prog. Phys. 72 036502
[14] Polian A, Grimsditch M and Grzegory I 1996 J. Appl. Phys. 79 3343
[15] Wagner J M and Bechstedt F 2000 Appl. Phys. Lett. 77 346
[16] Gleize J, Renucci M A, Frandon J, Bellet-Amalric E and Baudin B 2003 J. Appl. Phys. 93 2065
[17] Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager III J W, Jones E, Liliental-Weber Z, Rubin M and Weber E R 1996 Phys. Rev. B 54 17745
[18] Perlin P, Jauberthie-carllon C and Itie J P 1992 Phys. Rev. B 45 83
[19] Harima H 2002 J. Phys.: Condens. Matter 14 R967
[20] Shan W, Schmidt T J, Hauenstein R J and Song J J 1995 Appl. Phys. Lett. 66 3492
[21] Rieger W, Metzger T, Angerer H, Dimitrov R, Ambacher O and Stutzmann M 1996 Appl. Phys. Lett. 68 970
[22] Dobrynin A V 1999 J. Appl. Phys. 85 1876
[23] Moran B, Wu F, Romanov A E, Mishra U K, Denbaars S P and Specka J S 2004 J. Cryst. Growth 273 38
[24] Nishida T and Kobayashi N 2000 J. Cryst. Growth 221 297
[25] Einfeldt S, Reitmeier Z J and Davis R F 2003 J. Cryst. Growth 253 129