摘要According to the theory of optical films, we simulate the reflectivity of antireflection coatings (ARCs) for solar cells of Ga0.5In0.5P/GaAs/Ge based on an optical transfer matrix. In order to provide sufficient consideration of the refractive index dispersion effect of multilayer ARCs, we use multi−dimensional matrix data for reliable simulation. After the reflection curves are obtained, the effective average reflectance Re is introduced to optimize the film system by minimizing Re. Optimization of single layer (Al2O3), double layer (MgF2/ZnS) and triple layer (MgF2/Al2O3/ZnS) ARCs is realized by using this method for space and terrestrial applications. Effects of these ARCs are compared after optimization. These theoretical parameters can be used to guide experiments.
Abstract:According to the theory of optical films, we simulate the reflectivity of antireflection coatings (ARCs) for solar cells of Ga0.5In0.5P/GaAs/Ge based on an optical transfer matrix. In order to provide sufficient consideration of the refractive index dispersion effect of multilayer ARCs, we use multi−dimensional matrix data for reliable simulation. After the reflection curves are obtained, the effective average reflectance Re is introduced to optimize the film system by minimizing Re. Optimization of single layer (Al2O3), double layer (MgF2/ZnS) and triple layer (MgF2/Al2O3/ZnS) ARCs is realized by using this method for space and terrestrial applications. Effects of these ARCs are compared after optimization. These theoretical parameters can be used to guide experiments.
[1] Sun C H et al 2008 Appl. Phys. Lett. 92 061112
[2] Lee C et al 2005 Nano Lett. 5 2438
[3] Tao M et al 2007 Appl. Phys. Lett. 91 081118
[4] Huang Y F et al 2007 Nature Nanotechnol. 2 770
[5] Wang Y H et al 2009 J. Appl. Phys. 105 103501
[6] Lee D et al 2006 Nano Lett. 6 2305
[7] Green M A 1982 Solar Cells (New Jersey: Prentice-Hall Inc.) p 143
[8] Liu E K 1989 Principles and Applications of Photocells (Beijing: Science) p 140 (in Chinese)
[9] Richards B S 2003 Solar Energy Materials and Solar Cells 79 369
[10] Alexieva Z I et al 2010 J. Physics: Conf. Ser. 223 012045
[11] Selj J H et al 2010 J. Appl. Phys. 107 074904
[12] Bouhafs D et al 1998 Solar Energy Mater. Solar Cells 52 79
[13] Chhajed S et al 2008 Appl. Phys. Lett. 93 251108
[14] Weinstein W 1954 Vacuum 4 3
[15] Berning P H 1963 Physics of Thin Films (New York: Academic) chap 1 p 69
[16] Zhao J et al 1991 IEEE Trans. Electron Devices 38 1925
[17] Chopra K L et al 1983 Thin Film Solar Cell (New York: Plenum) p 507
[18] Yuan H R 2000 Acta Energiae Solaris Sinica 21 371(in Chinese)
[19] Levinshtein M et al 1996 Handbook Series on Semiconductor Parameters (London: World Scientific) chap 2 p 54
[20] Palik E D 1985 Handbook of Optical Constant of Solids (London: Academic) vol 1 p 602
[21] Palik E D 1997 Handbook of Optical Constant of Solids (London: Academic) vol 1 p 597
[22] Valle C A and Alcaraz M F 1997 IEEE Trans. Electron. Devices 44 1499
[23] Macleod H A 2006 Thin-Film Optical Filters (London: IOP) chap 3 p 86