摘要The effect of a benzimidazole derivative (TPBI) electron injection layer (EIL) on the performance of Alq3 based organic light−emitting devices (OLEDs) with a Cs2CO3/Al cathode is investigated. An increasing current density from 71.9 mA/cm2 to 188.3 mA/cm2, and an enhanced electroluminescence (EL) efficiency from 3.2 cd/A to 3.64 cd/A at 9 V are found when a thin TPBI layer (5 nm) is inserted at the Alq3/Cs2CO3 interface. After further increasing the TPBI thickness to 10 nm, OLEDs display a further increase in EL efficiency to 4.53 cd/A. Our experiment suggests that the TPBI thin layer at the Alq3/Cs2CO3 interface facilitates the electron injection and is also involved with hole-blocking and exciton confinement.
Abstract:The effect of a benzimidazole derivative (TPBI) electron injection layer (EIL) on the performance of Alq3 based organic light−emitting devices (OLEDs) with a Cs2CO3/Al cathode is investigated. An increasing current density from 71.9 mA/cm2 to 188.3 mA/cm2, and an enhanced electroluminescence (EL) efficiency from 3.2 cd/A to 3.64 cd/A at 9 V are found when a thin TPBI layer (5 nm) is inserted at the Alq3/Cs2CO3 interface. After further increasing the TPBI thickness to 10 nm, OLEDs display a further increase in EL efficiency to 4.53 cd/A. Our experiment suggests that the TPBI thin layer at the Alq3/Cs2CO3 interface facilitates the electron injection and is also involved with hole-blocking and exciton confinement.
LIAN Jia-Rong**;NIU Fang-Fang;LIU Ya-Wei;ZENG Peng-Ju
. Improved Hole-Blocking and Electron Injection Using a TPBI Interlayer at the Cathode Interface of OLEDs[J]. 中国物理快报, 2011, 28(4): 47803-047803.
LIAN Jia-Rong**, NIU Fang-Fang, LIU Ya-Wei, ZENG Peng-Ju
. Improved Hole-Blocking and Electron Injection Using a TPBI Interlayer at the Cathode Interface of OLEDs. Chin. Phys. Lett., 2011, 28(4): 47803-047803.
[1] Braun D and Heeger A 1991 Appl. Phys. Lett. 58 1982
[2] Tang C and VanSlyke S 1987 Appl. Phys. Lett. 51 913
[3] Stössel M, Staudigel J, Steuber F, Simmerer J and Winnacker A 1991 Appl. Phys. A: Mater. Sci. Proc. 68 387
[4] Deng X, Tong S, Hung L, Mo Y and Cao Y 2003 Appl. Phys. Lett. 82 3104
[5] Parthasarathy G, Shen C, Kahn A and Forrest S 2001 J. Appl. Phys. 89 4986
[6] Hung L, Tang C and Mason M 1997 Appl. Phys. Lett. 70 152
[7] Lee J, Park Y, Lee S, Cho E, Kim D, Chu H, Lee H, Do L and Zyung T 2002 Appl. Phys. Lett. 80 3123
[8] Tang H, Li F and Shiar J 1997 Appl. Phys. Lett. 71 2560
[9] Wu C, Lin C, Chen Y, Chen M, Lu Y and Wu C 2006 Appl. Phys. Lett. 88 152104
[10] Ma J, Jiang X, Liang Z, Cao J, Zhang X and Zhang Z 2009 Semicond. Sci. Technol. 24 035009
[11] Chen F, Wu J, Yang S, Hsieh K and Chen W 2008 J. Appl. Phys. 103 103721
[12] Wakimoto T, Fukuda Y, Nagayama K, Yokoi A, Nakada H and Tsuchida M 1997 IEEE Trans. Electron. Devices 44 1245
[13] Chen S, Chu T, Chen J, Su C and Chen C 2006 Appl. Phys. Lett. 89 053518
[14] Li Y, Zhang D, Duan L, Zhang R, Wang L and Qiu Y 2007 Appl. Phys. Lett. 90 012119
[15] Huang J, Xu Z and Yang Y 2007 Adv. Funct. Mater. 17 1966
[16] Zhang X, Khan M, Jiang X, Cao J, Zhu W and Zhang Z 2009 Phys. B: Cond. Matter. 404 1247
[17] Lian J, Liu Y, Niu F and Zeng P 2011 Appl. Surf. Sci. 257 4608
[18] Zhang S, Zhou Y, Zhao J, Zhan Y, Wang Z, Wu Y, Ding X and Hou X 2006 Appl. Phys. Lett. 89 043502
[19] Xie W, Wu Z, Hu W, Zhao Y, Li C and Liu S 2005 Semicond. Sci. and Technol. 20 443
[20] Divayana Y, Sun X, Chen B, Lo G, Sarma K and Kwong D 2007 Solid-State Electron. 51 1618
[21] Adamovich V, Cordero S, Djurovich P, Tamayo A, Thompson M, D'Andrade B and Forrest S 2003 Org. Electron. 4 77
[22] Chai S, Bie G, Xu X, Liu B, Liu Q, Yu G and Liu Y 2008 Chin. J. Lumin. 29 815 (in Chinese)
[23] Li C, Peng J and Zeng W 2009 Acta Phys. Sin. 58 1992 (in Chinese)
[24] Choong V, Park Y, Shivaparan N, Tang C and Gao Y 1997 Appl. Phys. Lett. 71 1005