1School of Physics Science and Technology, Central South University, Changsha 410083 2College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871
Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study
1School of Physics Science and Technology, Central South University, Changsha 410083 2College of Chemistry and Molecular Engineering, and Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871
摘要Based on the density functional theory, we calculate the dependence of the band structures of bilayer zigzag-edged graphene nanoribbons (BZGNRs) upon ribbon width, interlayer distance and stacking styles. Unlike monolayer zigzag GNR, whose energy gap is always zero under different ribbon widths, the gap of BZGNR varies greatly with the ribbon width or the interlayer distance. The greatest gaps for AA-stacking and AB-stacking BZGNRs are about 0.22 eV and 0.12 eV, respectively, which implies that gap-tuning of AA-BZGNRs is more effective than that of AB-BZGNRs. These results present a way to tune the band structures of BZGNRs and also provide theoretical guidance for the fabrication of GNR-based piezoelectric devices.
Abstract:Based on the density functional theory, we calculate the dependence of the band structures of bilayer zigzag-edged graphene nanoribbons (BZGNRs) upon ribbon width, interlayer distance and stacking styles. Unlike monolayer zigzag GNR, whose energy gap is always zero under different ribbon widths, the gap of BZGNR varies greatly with the ribbon width or the interlayer distance. The greatest gaps for AA-stacking and AB-stacking BZGNRs are about 0.22 eV and 0.12 eV, respectively, which implies that gap-tuning of AA-BZGNRs is more effective than that of AB-BZGNRs. These results present a way to tune the band structures of BZGNRs and also provide theoretical guidance for the fabrication of GNR-based piezoelectric devices.
[1] Novoselov K S et al 2004 Science 306 666
[2] Novoselov K S et al 2005 Nature 438 197
[3] Zhang Y B et al 2005 Nature 438 201
[4] Stankovich S et al 2006 Nature 442 282
[5] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[6] Park S J and Ruoff R S 2009 Nature Nanotechnol. 4 217
[7] Han M Y et al 2007 Phys. Rev. Lett. 98 206805
[8] Li X L et al 2008 Science 319 1229
[9] Kosynkin D V et al 2009 Nature 458 872
[10] Jiao L Y et al 2009 Nature 458 877
[11] Son Y W et al 2006 Phys. Rev. Lett. 97 216803
[12] Yan Q M et al 2007 Nano Lett. 7 1469
[13] Lu Y H 2009 Appl. Phys. Lett. 94 122111
[14] Zhang Z H and Guo W L 2009 Appl. Phys. Lett. 95 023107
[15] Martins T B et al 2007 Phys. Rev. Lett. 98 196803
[16] Ohta T et al 2006 Science 313 951
[17] Miyamoto Y 1999 Phys. Rev. B 59 9858
[18] Lam K T and Liang G 2008 Appl. Phys. Lett. 92 223106
[19] Raza H et al 2009 J. Phys.: Condens. Matter 21 102202
[20] Zhang Y B et al 2009 Nature 459 820
[21] Castro E V et al 2007 Phys. Rev. Lett. 99 216802
[22] Lima M P et al 2009 Phys. Rev. B 79 153401
[23] Guo Y F et al 2008 Appl. Phys. Lett. 92 243101
[24] Sahu B et al 2008 Phys. Rev. B 78 045404
[25] Li Z Y et al 2008 Phys. Rev. Lett. 100 206802
[26] Liu Z et al 2009 Phys. Rev. Lett. 102 015501