摘要We propose a scheme to achieve field-free molecular orientation by a nonresonant square laser pulse. Using CO molecules as an example, we show that, differing from the conventional Gaussian pulse, field-free molecular orientation excited by square pulses can be realized in both nonadiabatic and adiabatic cases. We also show that the maximum degree of the molecular orientation can be further enhanced by separating one square pulse into two time delayed subpulses and by applying the second subpulse at the beginning of the rotational wave packet rephrasing created by the first subpulse and the optimal intensity ratio between the two subpulses is about I1/I2 =1:1.5.
Abstract:We propose a scheme to achieve field-free molecular orientation by a nonresonant square laser pulse. Using CO molecules as an example, we show that, differing from the conventional Gaussian pulse, field-free molecular orientation excited by square pulses can be realized in both nonadiabatic and adiabatic cases. We also show that the maximum degree of the molecular orientation can be further enhanced by separating one square pulse into two time delayed subpulses and by applying the second subpulse at the beginning of the rotational wave packet rephrasing created by the first subpulse and the optimal intensity ratio between the two subpulses is about I1/I2 =1:1.5.
[1] Suzuki T, Minemoto S, Kanai T and Sakai H 2004 Phys. Rev. Lett. 92 133005
[2] Fleischer S, Averbukh I Sh and Prior Y 2006 Phys. Rev. A 74 041403
[3] Litvinyuk I V, Lee K F, Dooley P W, Rayner D M, Villeneuve D M and Corkum P B 2003 Phys. Rev. Lett. 90 233003
[4] Kjeldsen T K, Bisgaard C Z, Madsen L B and Stapelfeldt H 2003 Phys. Rev. A 68 063407
[5] Kumarappan V, Holmegaard L, Martiny C, Madsen C B, Kjeldsen T K, Viftrup S S, Madsen L B and Stapelfeldt H 2008 Phys. Rev. Lett. 100 093006
[6] Kanai T, Minemoto S and Sakai H 2005 Nature 435 470
[7] Kanai T, Minemoto S and Sakai H 2007 Phys. Rev. Lett. 98 053002
[8] Itatani J, Zeidler D, Levesque J, Spanner M, Villeneuve D M and Corkum P B 2005 Phys. Rev. Lett. 94 123902
[9] Stapelfeldt H and Seideman T 2003 Rev. Mod. Phys. 75 543 and references therein
[10] Parker D H and Bernstein R B 1989 Annu. Rev. Phys. Chem. 40 561
[11] Loesch H J and Remscheid A 1990 J. Chem. Phys. 93 4779
[12] Friedrich B and Herschbach D R 1991 Z. Phys. D 18 153
[13] De S, Znakovskaya I, Ray D, Anis F, Johnson N G, Bocharova I A, Magrakvelidze M, Esry B D, Cocke C L, Litvinyuk I V and Kling M F 2009 Phys. Rev. Lett. 103 153002
[14] Kanai T and Sakai H 2001 J. Chem. Phys. 115 5492
[15] Wu J and Zeng H 2010 Phys. Rev. A 81 053401
[16] Muramatsu M, Hita M, Minemoto S and Sakai H 2009 Phys. Rev. A 79 011403
[17] Abiague A M and Berakdar J 2003 Chem. Phys. Lett. 382 475
[18] Dion C M, Keller A and Atabek O 2001 Eur. Phys. J. D 14 249
[19] Abiague A M and Berakdar J 2003 Phys. Rev. A 68 063411
[20] Shu C C, Yuan K J, Hu W H and Cong S L 2010 J. Chem. Phys. 132 244311
[21] Guérin S, Rouzée A and Hertz E 2008 Phys. Rev. A 77 041404
[22] Friedrich B and Herschbach D R 1999 J. Chem. Phys. 111 6157
[23] Hoki K and Fujimura Y 2001 Chem. Phys. 267 187
[24] Weiner A M, Heritage J P and Kirschner E M 1988 J. Opt. Soc. Am. B 5 1563
[25] Torres R, Nalda R d and Marangos J P 2005 Phys. Rev. A 72 023420
[26] Feit M D, Fleck J A J and Steiger A 1982 J. Comput. Phys. 47 412
[27] Bandrauk A D and Shen H 1993 J. Chem. Phys. 99 1185
[28] Peterson K A and Dunning T H J 1997 J. Mol. Struct. Theochem. 400 93
[29] Pecul M 2005 Chem. Phys. Lett. 404 217
[30] Leibscher M, Averbukh I S and Rabitz H 2004 Phys. Rev. A 69 013402