摘要A general expression for the scalar susceptibility in QED3 is given. We adopt the Dyson–Schwinger equation for the fermion propagator to solve χc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase. We show that the scalar susceptibility has a peak and the corresponding N is less than the critical number of fermion flavors for chiral symmetry.
Abstract:A general expression for the scalar susceptibility in QED3 is given. We adopt the Dyson–Schwinger equation for the fermion propagator to solve χc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase. We show that the scalar susceptibility has a peak and the corresponding N is less than the critical number of fermion flavors for chiral symmetry.
[1] Liu G Z and Cheng G 2003 Phys. Rev. D 67 065010
[2] Karsch F and Laermann E 1994 Phys. Rev. D 50 6954
[3] M Cheng et al 2007 Phys. Rev. D 75 034506
[4] Wu L K et al 2007 Phys. Rev. D 76 034505
[5] He M Jiang Y Sun E M and Zong H S 2008 Phys. Rev. D 77 076008
[6] Chang L Liu Y X Roberts C D Shi Y M Sun W M and Zong H S 2009 Phys. Rev. C 79 035209
[7] He M Hu F Sun W M and Zong H S 2009 Phys. Lett. B 675 32
[8] Pisarski R D 1984 Phys. Rev. D 29 2423
[9] Appelquist T Bowick M Karabali D and Wijewardhana L C R 1986 Phys. Rev. D 33 3704
[10] Nash D 1989 Phys. Rev. Lett. 62 3024
[11] Kondo K I and Nakatani H 1992 Prog. Theor. Phys. 87 193
[12] Burden C J and Robert C D 1991 Phys. Rev. D 44 540
[13] Appelquist T et al 1988 Phys. Rev. Lett. 60 2575
[14] Maris P 1996 Phys. Rev. D 54 4049
[15] Feng H T Hu F Sun W M and Zong H S 2005 Commun. Theor. Phys. 43 501
[16] Burden C J Praschifka J and Roberts C D 1995 Phys. Rev. D 46 2695
[17] Maris P 1995 Phys. Rev. D 52 6087
[18] Feng H T Sun W M Hu F and Zong H S 2005 Inter. J. Mod. Phys. A 20 2753
[19] Feng H T He D K Sun W M and Zong H S 2008 Phys. Lett. B 661 57