Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN
HOU Qi-Feng1**, WANG Xiao-Liang1,2, XIAO Hong-Ling1,2, WANG Cui-Mei1,2, YANG Cui-Bai1,2, YIN Hai-Bo1, LI Jin-Min1, WANG Zhan-Guo2
1Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 2Key Laboratory of Semiconductor Materials Science, Chinese Academy of Sciences, PO Box 912, Beijing 100083
Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN
HOU Qi-Feng1**, WANG Xiao-Liang1,2, XIAO Hong-Ling1,2, WANG Cui-Mei1,2, YANG Cui-Bai1,2, YIN Hai-Bo1, LI Jin-Min1, WANG Zhan-Guo2
1Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 2Key Laboratory of Semiconductor Materials Science, Chinese Academy of Sciences, PO Box 912, Beijing 100083
摘要Yellow and blue luminescence in undoped GaN layers with different resistivities are studied by cathodoluminescence. Intense yellow and blue luminescence bands are observed in semi-insulating GaN, while in n-GaN the yellow luminescence and blue luminescence bands are very weak. The stronger yellow and blue luminescences in semi-insulating GaN are correlated to the higher edge-type dislocation density. The scanning cathodoluminescence image reveals strong defect-related luminescence at the grain boundaries where the dislocations accumulate. It is found that the relative intensity of the blue luminescence band to the yellow luminescence band increases with the cathodoluminescence beam energies and is larger in n-GaN with a lower density of edge-type dislocations. An approximately 3.35 eV shoulder next to the near-band-edge peak is observed in n-GaN but not in semi-insulating GaN. A redshift of the near-band-edge peak with cathodoluminescence beam energy is observed in both samples and is explained by internal absorption.
Abstract:Yellow and blue luminescence in undoped GaN layers with different resistivities are studied by cathodoluminescence. Intense yellow and blue luminescence bands are observed in semi-insulating GaN, while in n-GaN the yellow luminescence and blue luminescence bands are very weak. The stronger yellow and blue luminescences in semi-insulating GaN are correlated to the higher edge-type dislocation density. The scanning cathodoluminescence image reveals strong defect-related luminescence at the grain boundaries where the dislocations accumulate. It is found that the relative intensity of the blue luminescence band to the yellow luminescence band increases with the cathodoluminescence beam energies and is larger in n-GaN with a lower density of edge-type dislocations. An approximately 3.35 eV shoulder next to the near-band-edge peak is observed in n-GaN but not in semi-insulating GaN. A redshift of the near-band-edge peak with cathodoluminescence beam energy is observed in both samples and is explained by internal absorption.
HOU Qi-Feng**;WANG Xiao-Liang;XIAO Hong-Ling;WANG Cui-Mei;YANG Cui-Bai;YIN Hai-Bo;LI Jin-Min;WANG Zhan-Guo
. Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN[J]. 中国物理快报, 2011, 28(3): 37102-037102.
HOU Qi-Feng**, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, YANG Cui-Bai, YIN Hai-Bo, LI Jin-Min, WANG Zhan-Guo
. Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN. Chin. Phys. Lett., 2011, 28(3): 37102-037102.
[1] Yang L, Hao Y, Ma X H, Quan S, Hu G Z, Jiang S G and Yang L Y 2009 Chin. Phys. Lett. 26 117104
[2] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 IEEE Device Research Conference (State College, PA, USA 26–28 June 2006) 64th p 151
[3] Yang L, Ma J J, Zhu C, Hao Y and Ma X H 2010 Chin. Phys. Lett. 27 027102
[4] Pimputkar S, Speck J S, DenBaars S P and Nakamura S 2009 Nature Photonics 3 180
[5] Kuriyama K, Ooi M, Onoue A, Kushida K, Okada M and Xu Q 2006 Appl. Phys. Lett. 88 132109
[6] Ogino T and Aoki M 1980 Jpn. J. Appl. Phys. 19 2395
[7] Reshchikov M A and Morkoc H 2005 J. Appl. Phys. 97 061301
[8] Zhao D G, Jiang D S, Zhu J J, Liu Z S, Wang H, Zhang S M, Wang Y T and Yang Hui 2009 Appl. Phys. Lett. 95 041901
[9] Sedhain A, Li J, Lin J Y and Jiang H X 2010 Appl. Phys. Lett. 96 151902
[10] Lyons J L, Janotti A and Van de Walle C G 2010 Appl. Phys. Lett. 97 152108
[11] Reshchikov M A, Shahedipour F, Korotkov R Y, Ulmer M P and Wessels B W 1999 Physica B 273-274 105
[12] Reshchikov M A, Shahedipour F, Korotkov R Y, Wessels B W and Ulmer M P 2000 J. Appl. Phys. 87 3351
[13] Seager C H, Wright A F, Yu J and Götz W 2002 J. Appl. Phys. 92 6553
[14] Armitage R, Yang Q and Weberb E R 2005 J. Appl. Phys. 97 073524
[15] Xu F J, Shen B, Lu L, Miao Z L, Song J, Zhang Z J, Zhang G Y, Hao X P, Wang B Y, Shen X Q and Okumura H 2010 J. Appl. Phys. 107 023528
[16] Kucheyev S O, Toth M, Phillips M R, Williams J S, Jagadish C and Li G 2002 J. Appl. Phys. 91 5867
[17] Lu L, Shen B, Xu F J, Xu J, Gao B, Yang Z J, Zhang G Y, Zhang X P and Yu D P 2007 J. Appl. Phys. 102 033510
[18] Godlewski M, Goldys E M and Philips M R 2000 J. Lumin. 87–89 1155
[19] Godlewski M, Goldys E M, Philips M R, Langer R and Barski A 1998 Appl. Phys. Lett. 73 3686
[20] Reshchikov M A and Korotkov R Y 2001 Phys. Rev. B 64 115205
[21] Toth M, Fleischer K and Phillips M R 1999 Phys. Rev. B 59 1575
[22] Elsner J, Jones R, Heggie M I, Sitch P K, Haugk M, Frauenheim Th, Öberg S and Briddon P R 1998 Phys. Rev. B 58 12571
[23] Knobloch K, Perlin P, Krueger J, Weber E R and Kisielowski C 1998 MRS Internet J. Nitride Semicond. Res. 3 4
[24] Porporati A A and Pezzott G 2009 Eur. Phys. J. Appl. Phys. 48 30901
[25] Eckey L, Holst J Ch, Maxim P, Heitz R, Hoffmann A, Broser I, Meyer B K, Wetzel C, Mokhov E N and Baranov P G 1996 Appl. Phys. Lett. 68 415
[26] Chen G D, Smith M, Lin J Y, Jiang H X, Salvador A, Sverdlov B N, Botchkarv A and Morkoc H 1996 J. Appl. Phys. 79 2675