摘要Using molecular dynamics simulations, we study the wetting of liquid iron in a carbon nanotube and on a graphene sheet. It is found that the contact angle of a droplet in a carbon nanotube increases linearly with the increase of wall curvature but is independent of the length of the filled liquid. The contact angle for a droplet on a graphene sheet decreases with the increasing droplet size. The line tension of a droplet on a graphene sheet is also obtained. Detailed studies show that liquid iron near the carbon walls exhibits the ordering tendencies in both the normal and tangential directions.
Abstract:Using molecular dynamics simulations, we study the wetting of liquid iron in a carbon nanotube and on a graphene sheet. It is found that the contact angle of a droplet in a carbon nanotube increases linearly with the increase of wall curvature but is independent of the length of the filled liquid. The contact angle for a droplet on a graphene sheet decreases with the increasing droplet size. The line tension of a droplet on a graphene sheet is also obtained. Detailed studies show that liquid iron near the carbon walls exhibits the ordering tendencies in both the normal and tangential directions.
GAO Yu-Feng;YANG Yang;SUN De-Yan**
. Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study[J]. 中国物理快报, 2011, 28(3): 36102-036102.
GAO Yu-Feng, YANG Yang, SUN De-Yan**
. Wetting of Liquid Iron in Carbon Nanotubes and on Graphene Sheets: A Molecular Dynamics Study. Chin. Phys. Lett., 2011, 28(3): 36102-036102.
[1] de Gennes P G 1985 Rev. Mod. Phys. 57 827
[2] Bonn D et al 2009 Rev. Mod. Phys. 81 739
[3] Méndez-Vilas A et al 2009 Small 5 1366
[4] Ajayan P M and Ijima S 1993 Nature 361 333
[5] Dujardin E et al 1994 Science 265 1850
[6] Tsang S C et al 1994 Nature 372 159
[7] Iskhakov R S et al 2003 JETP Lett. 78 236
[8] Ugarte D et al 1996 Science 274 1897
[9] Leonhardt A et al 2003 Diam. Relat. Mater. 12 790
[10] Borawiak-Palen E et al 2006 Chem. Phys. Lett. 421 129
[11] Boruvka L and Neumann A 1977 J. Chem. Phys. 66 5464
[12] Wei D C et al 2007 Adv. Mater. 19 386
[13] Checco A et al 2003 Phys. Rev. Lett. 91 186101
[14] Werder T et al 2001 Nano Lett. 1 697
[15] Werder T et al 2003 J. Phys. Chem. B 107 1345
[16] Guo H K and Fang H P 2005 Chin. Phys. Lett. 22 787
[17] Voronov R S et al 2006 J. Chem. Phys. 124 204701
[18] Kutana A and Giapis K P 2007 Phys. Rev. B 76 195444
[19] Shi B and Dhir V K 2009 J. Chem. Phys. 130 034705
[20] Yuan Q Z and Zhao Y P 2010 Phys. Rev. Lett. 104 246101
[21] Horsch M et al 2010 Langmuir 26 10913
[22] Guo Y F and Guo W L 2006 Nanotechnology 17 4726
[23] Noon W H et al 2002 Chem. Phys. Lett. 355 445
[24] Plimpton S 1995 J. Comput. Phys. 117 1
[25] Mendelev M I et al 2003 Philos. Mag. 83 3977
[26] Brenner D W et al 2002 J. Phys.: Condens. Matter 14 783
[27] Broughton J Q and Gilmer G H 1983 Acta Metall. 31 845
[28] Davidchack R L et al 2003 J. Chem. Phys. 118 7651
[29] Durgun E et al 2003 Phys. Rev. B 67 201401
[30] Yang Y et al 2010 Phys. Rev. B 81 241407(R)
[31] Hummer G et al 2001 Nature 414 188
[32] Nijmeijer M J P et al 1988 J. Chem. Phys. 89 3789
[33] Mills K C and Su Y C 2006 Int. Mater. Rev. 51 329
[34] Wille G et al 2002 Int. J. Thermophys. 23 1197
[35] Amirfazli A and Neumann A W 2004 Adv. Colloid Interface Sci. 110 121
[36] Harkins W D 1937 J. Chem. Phys. 5 135
[37] Getta T and Dietrich S 1998 Phys. Rev. E 57 655
[38] Bresme F and Quirke N 1998 Phys. Rev. Lett. 80 3791
[39] Marmur A and Krasovitski B 2002 Langmuir 18 8919